IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2016-050.html
   My bibliography  Save this paper

Network quantile autoregression

Author

Listed:
  • Zhu, Xuening
  • Wang, Weining
  • Wang, Hangsheng
  • Härdle, Wolfgang Karl

Abstract

It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregres- sion model (NQAR) to characterize the dynamic quantile behavior in a complex system. In particular, we relate responses to its connected nodes and node spe- ci c characteristics in a quantile autoregression process. A minimum contrast estimation approach for the NQAR model is introduced, and the asymptotic properties are studied. Finally, we demonstrate the usage of our model by in- vestigating the nancial contagions in the Chinese stock market accounting for shared ownership of companies.

Suggested Citation

  • Zhu, Xuening & Wang, Weining & Wang, Hangsheng & Härdle, Wolfgang Karl, 2016. "Network quantile autoregression," SFB 649 Discussion Papers 2016-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2016-050
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/148885/1/875026885.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    2. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    5. Dennis Novy, 2013. "Gravity Redux: Measuring International Trade Costs With Panel Data," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 101-121, January.
    6. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    7. Miguel Antón & Florian Ederer & Mireia Giné & Martin Schmalz, 2023. "Common Ownership, Competition, and Top Management Incentives," Journal of Political Economy, University of Chicago Press, vol. 131(5), pages 1294-1355.
    8. Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2016. "When Micro Prudence Increases Macro Risk: The Destabilizing Effects of Financial Innovation, Leverage, and Diversification," Operations Research, INFORMS, vol. 64(5), pages 1073-1088, October.
    9. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    10. Lorenzo Cappiello & Bruno Gérard & Arjan Kadareja & Simone Manganelli, 2014. "Measuring Comovements by Regression Quantiles," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 645-678.
    11. Lung-Fei Lee & Jihai Yu, 2009. "Spatial Nonstationarity and Spurious Regression: the Case with a Row-normalized Spatial Weights Matrix," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(3), pages 301-327.
    12. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    13. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    14. Tao Zou & Wei Lan & Hansheng Wang & Chih-Ling Tsai, 2017. "Covariance Regression Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 266-281, January.
    15. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Okhrin, Yarema, 2019. "Tail event driven networks of SIFIs," Journal of Econometrics, Elsevier, vol. 208(1), pages 282-298.
    16. Jingfei Zhang & Yuguo Chen, 2013. "Sampling for Conditional Inference on Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1295-1307, December.
    17. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    18. Granger, Clive W. J. & Huangb, Bwo-Nung & Yang, Chin-Wei, 2000. "A bivariate causality between stock prices and exchange rates: evidence from recent Asianflu," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(3), pages 337-354.
    19. Portnoy, Stephen, 1991. "Asymptotic behavior of regression quantiles in non-stationary, dependent cases," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 100-113, July.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Jing Zhou & Yundong Tu & Yuxin Chen & Hansheng Wang, 2017. "Estimating Spatial Autocorrelation With Sampled Network Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 130-138, January.
    22. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    23. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    24. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    25. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    26. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    27. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
    2. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    3. Xu, Xiu & Wang, Weining & Shin, Yongcheol, 2020. "Dynamic Spatial Network Quantile Autoregression," IRTG 1792 Discussion Papers 2020-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    5. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    6. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto Calogero, 2017. "Estimation and model-based combination of causality networks," SAFE Working Paper Series 165, Leibniz Institute for Financial Research SAFE.
    7. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    8. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    9. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    10. Ren, Yimeng & Li, Zhe & Zhu, Xuening & Gao, Yuan & Wang, Hansheng, 2024. "Distributed estimation and inference for spatial autoregression model with large scale networks," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    12. Christis Katsouris, 2023. "Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models," Papers 2305.11282, arXiv.org, revised Jul 2023.
    13. Jiang, Wen & Xu, Qiuhua & Zhang, Ruige, 2022. "Tail-event driven network of cryptocurrencies and conventional assets," Finance Research Letters, Elsevier, vol. 46(PB).
    14. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    15. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Okhrin, Yarema, 2017. "Tail event driven networks of SIFIs," SFB 649 Discussion Papers 2017-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    17. repec:hum:wpaper:sfb649dp2016-057 is not listed on IDEAS
    18. López-Espinosa, Germán & Moreno, Antonio & Rubia, Antonio & Valderrama, Laura, 2015. "Systemic risk and asymmetric responses in the financial industry," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 471-485.
    19. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
    21. Feng, Yusen & Wang, Gang-Jin & Zhu, You & Xie, Chi, 2023. "Systemic risk spillovers and the determinants in the stock markets of the Belt and Road countries," Emerging Markets Review, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Social Network; Quantile Regression; Autoregression; Systemic Risk; Financial Contagion; Shared Ownership;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.