IDEAS home Printed from https://ideas.repec.org/f/pba533.html
   My authors  Follow this author

Erik J. Balder

Personal Details

First Name:Erik
Middle Name:J.
Last Name:Balder
Suffix:
RePEc Short-ID:pba533
http://www.staff.science.uu.nl/~balde101

Affiliation

Mathematisch Instituut, Universiteit Utrecht (Mathematical Institute, University of Utrecht)

http://www.math.uu.nl
Netherlands, Utrecht

Research output

as
Jump to: Working papers Articles

Working papers

  1. Balder, Erik, 2008. "Exact and Useful Optimization Methods for Microeconomics," MPRA Paper 47080, University Library of Munich, Germany, revised 04 Mar 2011.

Articles

  1. Erik Balder, 2011. "An equilibrium closure result for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 47-65, September.
  2. Erik Balder & Nicholas Yannelis, 2009. "Bayesian–Walrasian equilibria: beyond the rational expectations equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 385-397, February.
  3. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
  4. Erik Balder & Nicholas Yannelis, 2006. "Continuity properties of the private core," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 453-464, October.
  5. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
  6. Balder, Erik J., 2003. "On undominated Nash equilibria for games with a measure space of players," Economics Letters, Elsevier, vol. 80(2), pages 137-140, August.
  7. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
  8. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.
  9. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
  10. Balder, Erik J., 1996. "On the Existence of Optimal Contract Mechanisms for Incomplete Information Principal-Agent Models," Journal of Economic Theory, Elsevier, vol. 68(1), pages 133-148, January.
  11. Erik J. Balder, 1996. "Remarks on Nash equilibria for games with additively coupled payoffs (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 161-167.
  12. Balder, E. J., 1996. "Comments on the existence of equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 25(3), pages 307-323.
  13. Balder, Erik J, 1995. "A Unifying Approach to Existence of Nash Equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 79-94.
  14. Balder E. J. & Rustichini A., 1994. "An Equilibrium Result for Games with Private Information and Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 62(2), pages 385-393, April.
  15. Balder, Erik J & Yannelis, Nicholas C, 1993. "On the Continuity of Expected Utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 625-643, October.
  16. Balder, Erik J, 1991. "On Cournot-Nash Equilibrium Distributions for Games with Differential Information and Discontinuous Payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(4), pages 339-354, October.
  17. Balder, Erik J., 1989. "On compactness of the space of policies in stochastic dynamic programming," Stochastic Processes and their Applications, Elsevier, vol. 32(1), pages 141-150, June.
  18. Balder, E. J., 1985. "Elimination of randomization in statistical decision theory reconsidered," Journal of Multivariate Analysis, Elsevier, vol. 16(2), pages 260-264, April.
  19. Balder E.J. & Gilliland D.C. & Houwelingen J.C. van, 1983. "On The Essential Completeness Of Bayes Empirical Bayes Decision Rules," Statistics & Risk Modeling, De Gruyter, vol. 1(4-5), pages 503-510, May.
  20. Balder, E. J., 1980. "An extension of the usual model in statistical decision theory with applications to stochastic optimization problems," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 385-397, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

    Sorry, no citations of working papers recorded.

Articles

  1. Erik Balder, 2011. "An equilibrium closure result for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 47-65, September.

    Cited by:

    1. Kolpin, Van, 2014. "Endogenous convention, prejudice, and trust in demographic summary games," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 128-133.
    2. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    3. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    4. Guilherme Carmona, 2011. "Symposium on: Existence of Nash equilibria in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 1-4, September.
    5. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    6. Matías Núñez & Marco Scarsini, 2016. "Competing over a finite number of locations," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 125-136, October.
    7. Zhiwei Liu & Nicholas C. Yannelis, 2013. "On Discontinuous Games with Asymmetric Information," The School of Economics Discussion Paper Series 1318, Economics, The University of Manchester.
    8. Carmona, Guilherme & Podczeck, Konrad, 2013. "Existence of Nash Equilibrium in games with a measure space of players and discontinuous payoff functions," MPRA Paper 44263, University Library of Munich, Germany.
    9. Alejandro Saporiti, 2014. "Power sharing and electoral equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(3), pages 705-729, April.
    10. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    11. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    12. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.

  2. Erik Balder & Nicholas Yannelis, 2009. "Bayesian–Walrasian equilibria: beyond the rational expectations equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 385-397, February.

    Cited by:

    1. Pesce, Marialaura & Yannelis, Nicholas C., 2010. "Learning and stability of the Bayesian-Walrasian equilibrium," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 762-774, September.
    2. Shorish, Jamsheed, 2006. "Functional Rational Expectations Equilibria in Market Games," Economics Series 186, Institute for Advanced Studies.
    3. Dionysius Glycopantis & Carlos Hervés-Beloso & Konrad Podczeck, 2009. "Symposium on: equilibria with asymmetric information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 217-219, February.
    4. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    5. Luciano Castro & Marialaura Pesce & Nicholas Yannelis, 2011. "Core and equilibria under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 519-548, October.

  3. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.

    Cited by:

    1. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    2. Martin Meier & Enrico Minelli & Herakles Polemarchakis, 2009. "Competitive Markets with Private Information on Both Sides," Working Papers 0917, University of Brescia, Department of Economics.
    3. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.

  4. Erik Balder & Nicholas Yannelis, 2006. "Continuity properties of the private core," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 453-464, October.

    Cited by:

    1. João Correia-da-Silva & Carlos Hervés-Beloso, 2007. "Private Information: Similarity as Compatibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(3), pages 395-407, March.
    2. Hervés-Beloso, Carlos & Martins-da-Rocha, Victor Filipe & Monteiro, P. K., 2008. "Equilibrium theory with asymmetric information and infinitely many states," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 673, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    3. Evren, Özgür & Hüsseinov, Farhad, 2008. "Theorems on the core of an economy with infinitely many commodities and consumers," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1180-1196, December.

  5. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.

    Cited by:

    1. Faias, Marta & Hervés-Estévez, Javier & Moreno-García, Emma, 2014. "Stability in price competition revisited," MPRA Paper 62302, University Library of Munich, Germany, revised 31 Aug 2014.
    2. Erik Balder, 2011. "An equilibrium closure result for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 47-65, September.
    3. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.

  6. Balder, Erik J., 2003. "On undominated Nash equilibria for games with a measure space of players," Economics Letters, Elsevier, vol. 80(2), pages 137-140, August.

    Cited by:

    1. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    2. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.

  7. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.

    Cited by:

    1. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    2. Kolpin, Van, 2014. "Endogenous convention, prejudice, and trust in demographic summary games," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 128-133.
    3. Sofía Correa & Juan Torres-Martínez, 2014. "Essential equilibria of large generalized games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 479-513, November.
    4. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    5. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2015. "Differential information in large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 201-243, May.
    6. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    7. Guilherme Carmona, 2009. "A remark on the measurability of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 491-494, June.
    8. Riascos Villegas, Alvaro & Torres-Martínez, Juan Pablo, 2012. "On the existence of pure strategy equilibria in large generalized games with atomic players," MPRA Paper 36626, University Library of Munich, Germany.
    9. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    10. Kolpin, Van, 2009. "Pure strategy equilibria in large demographic summary games," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 132-141, July.
    11. Carmona, Guilherme, 2006. "A Uni¯ed Approach to the Puri¯cation of Nash Equilibria in Large Games," FEUNL Working Paper Series wp491, Universidade Nova de Lisboa, Faculdade de Economia.
    12. Yang, Jian & Qi, Xiangtong, 2013. "The nonatomic supermodular game," Games and Economic Behavior, Elsevier, vol. 82(C), pages 609-620.
    13. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
    14. Riascos Villegas, Alvaro & Torres-Martínez, Juan Pablo, 2013. "On pure strategy equilibria in large generalized games," MPRA Paper 46840, University Library of Munich, Germany.
    15. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2016. "Behavioral perfect equilibrium in Bayesian games," Games and Economic Behavior, Elsevier, vol. 98(C), pages 78-109.
    16. Sofía Correa & Juan Pablo Torres-Martínez, 2016. "Large Multi-Objective Generalized Games: Existence and Essential Stability of Equilibria," Working Papers wp430, University of Chile, Department of Economics.
    17. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.
    18. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    19. Carmona, Guilherme & Podczeck, Konrad, 2013. "Existence of Nash Equilibrium in games with a measure space of players and discontinuous payoff functions," MPRA Paper 44263, University Library of Munich, Germany.
    20. Balder, Erik J., 2003. "On undominated Nash equilibria for games with a measure space of players," Economics Letters, Elsevier, vol. 80(2), pages 137-140, August.
    21. Roger Guesnerie & Pedro Jara-Moroni, 2011. "Expectational coordination in simple economic contexts," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 205-246, June.
    22. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
    23. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications, Elsevier.
    24. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.
    25. Adib Bagh, 2016. "Existence of equilibria in constrained discontinuous games," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 769-793, November.
    26. Jian Yang, 2017. "A link between sequential semi-anonymous nonatomic games and their large finite counterparts," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 383-433, May.
    27. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    28. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    29. Correa, Sofía & Torres-Martínez, Juan Pablo, 2012. "Essential stability for large generalized games," MPRA Paper 36625, University Library of Munich, Germany.

  8. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.

    Cited by:

    1. M Ali Khan, 2007. "Perfect Competition," Microeconomics Working Papers 22207, East Asian Bureau of Economic Research.
    2. Bernard Cornet & Mihaela Topuzu, 2005. "Existence Of Equilibria For Economies With Externalities And A Measure Space Of Consumers," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200505, University of Kansas, Department of Economics, revised Feb 2005.
    3. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    4. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    5. Mitsunori Noguchi & William R. Zame, 2005. "Equilibrium Distributions with Externalities," Levine's Bibliography 666156000000000543, UCLA Department of Economics.
    6. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

  9. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.

    Cited by:

    1. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    2. Sofía Correa & Juan Torres-Martínez, 2014. "Essential equilibria of large generalized games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 479-513, November.
    3. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    4. Riascos Villegas, Alvaro & Torres-Martínez, Juan Pablo, 2012. "On the existence of pure strategy equilibria in large generalized games with atomic players," MPRA Paper 36626, University Library of Munich, Germany.
    5. Álvaro Riascos Villegas & Juan Pablo Torres-Martínez, 2010. "A Direct Proof of the Existence of Pure Strategy Equilibria in Large Generalized Games with Atomic Players," DOCUMENTOS CEDE 007091, UNIVERSIDAD DE LOS ANDES-CEDE.
    6. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    7. Rubén Poblete-Cazenave & Juan Torres-Martínez, 2013. "Equilibrium with limited-recourse collateralized loans," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(1), pages 181-211, May.
    8. Riascos Villegas, Alvaro & Torres-Martínez, Juan Pablo, 2013. "On pure strategy equilibria in large generalized games," MPRA Paper 46840, University Library of Munich, Germany.
    9. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.
    10. Balder, Erik J., 2003. "On undominated Nash equilibria for games with a measure space of players," Economics Letters, Elsevier, vol. 80(2), pages 137-140, August.
    11. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
    12. Erhan Bayraktar & Alexander Munk, 2016. "High-Roller Impact: A Large Generalized Game Model of Parimutuel Wagering," Papers 1605.03653, arXiv.org, revised Mar 2017.
    13. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    14. Correa, Sofía & Torres-Martínez, Juan Pablo, 2012. "Essential stability for large generalized games," MPRA Paper 36625, University Library of Munich, Germany.

  10. Balder, Erik J., 1996. "On the Existence of Optimal Contract Mechanisms for Incomplete Information Principal-Agent Models," Journal of Economic Theory, Elsevier, vol. 68(1), pages 133-148, January.

    Cited by:

    1. Che,Y.-K. & Kim,J., 2004. "Collusion-proof implementation of optimal mechanisms," Working papers 4, Wisconsin Madison - Social Systems.
    2. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    3. David A. Miller, 2005. "The dynamic cost of ex post incentive compatibility in repeated games of private information," Game Theory and Information 0510002, University Library of Munich, Germany.
    4. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    5. Noldeke, Georg & Larry Samuelson, 2015. "The Implementation Duality," Cowles Foundation Discussion Papers 1993, Cowles Foundation for Research in Economics, Yale University.
    6. Page Jr., Frank H., 1998. "Existence of optimal auctions in general environments," Journal of Mathematical Economics, Elsevier, vol. 29(4), pages 389-418, May.
    7. Monte Daniel, 2010. "A Theory of Credibility under Commitment," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-15, July.
    8. Matthieu Neveu, 2002. "Optimum intérieur et financement efficient d'un bien public :une expérience," Post-Print halshs-00178479, HAL.
    9. Carlier, G. & Dana, R.-A., 2005. "Existence and monotonicity of solutions to moral hazard problems," Journal of Mathematical Economics, Elsevier, vol. 41(7), pages 826-843, November.

  11. Erik J. Balder, 1996. "Remarks on Nash equilibria for games with additively coupled payoffs (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 161-167.

    Cited by:

    1. Peter Duersch & Joerg Oechssler & Burkhard Schipper, 2013. "When is Tit-For-Tat unbeatable?," Working Papers 131, University of California, Davis, Department of Economics.
    2. Arsen Palestini & Ilaria Poggio, 2015. "A Bayesian potential game to illustrate heterogeneity in cost/benefit characteristics," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 62(1), pages 23-39, March.
    3. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.

  12. Balder, E. J., 1996. "Comments on the existence of equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 25(3), pages 307-323.

    Cited by:

    1. Ambrus, Attila & Egorov, Georgy, 2017. "Delegation and nonmonetary incentives," Journal of Economic Theory, Elsevier, vol. 171(C), pages 101-135.
    2. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    3. Hammond, Peter J., 1999. "On f-core equivalence with general widespread externalities," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 177-184, October.
    4. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
    5. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

  13. Balder, Erik J, 1995. "A Unifying Approach to Existence of Nash Equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 79-94.

    Cited by:

    1. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    2. Carmen Camacho & Takashi Kamihigashi & Cagri Saglam, 2016. "Robust Comparative Statics for Non-monotone Shocks in Large Aggregative Games," Discussion Paper Series DP2016-02, Research Institute for Economics & Business Administration, Kobe University.
    3. Agnieszka Wiszniewska-Matyszkiel, 2016. "Belief distorted Nash equilibria: introduction of a new kind of equilibrium in dynamic games with distorted information," Annals of Operations Research, Springer, vol. 243(1), pages 147-177, August.
    4. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    5. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2012. "Social Decision Theory: Choosing within and between Groups," Review of Economic Studies, Oxford University Press, vol. 79(4), pages 1591-1636.
    6. Agnieszka Wiszniewska-Matyszkiel, 2017. "Redefinition of Belief Distorted Nash Equilibria for the Environment of Dynamic Games with Probabilistic Beliefs," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 984-1007, March.
    7. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
    8. Peter Helgesson & Bernt Wennberg, 2015. "The N-Player War of Attrition in the Limit of Infinitely Many Players," Dynamic Games and Applications, Springer, vol. 5(1), pages 65-93, March.
    9. Wiszniewska-Matyszkiel, Agnieszka, 2005. "Stock market as a dynamic game with continuum of players," MPRA Paper 32982, University Library of Munich, Germany, revised 2006.
    10. Agnieszka Wiszniewska-Matyszkiel, 2014. "Open and Closed Loop Nash Equilibria in Games with a Continuum of Players," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 280-301, January.
    11. Fabio Maccheroni Jr. & Massimo Marinacci Jr. & Aldo Rustichini Jr., 2014. "Pride and Diversity in Social Economies," American Economic Journal: Microeconomics, American Economic Association, vol. 6(4), pages 237-271, November.
    12. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

  14. Balder E. J. & Rustichini A., 1994. "An Equilibrium Result for Games with Private Information and Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 62(2), pages 385-393, April.

    Cited by:

    1. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    2. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2015. "Differential information in large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 201-243, May.
    3. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    4. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
    5. Kets, Willemien, 2011. "Robustness of equilibria in anonymous local games," Journal of Economic Theory, Elsevier, vol. 146(1), pages 300-325, January.
    6. Kim, Taesung & Yannelis, Nicholas C., 1997. "Existence of Equilibrium in Bayesian Games with Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 77(2), pages 330-353, December.
    7. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).

  15. Balder, Erik J & Yannelis, Nicholas C, 1993. "On the Continuity of Expected Utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 625-643, October.

    Cited by:

    1. Page Jr., Frank H., 2008. "Catalog competition and stable nonlinear prices," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 822-835, July.
    2. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    3. Klishchuk, Bogdan, 2015. "New conditions for the existence of Radner equilibrium with infinitely many states," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 67-73.
    4. Berliant, Marcus & Dunz, Karl, 1995. "Existence of equilibrium with nonconvexities and finitely many agents," Journal of Mathematical Economics, Elsevier, vol. 24(1), pages 83-93.
    5. Krasa, Stefan & Yannelis, Nicholas C., 1996. "Existence and properties of a value allocation for an economy with differential information," Journal of Mathematical Economics, Elsevier, vol. 25(2), pages 165-179.
    6. Hervés-Beloso, Carlos & Martins-da-Rocha, Victor Filipe & Monteiro, P. K., 2008. "Equilibrium theory with asymmetric information and infinitely many states," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 673, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    7. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    8. Kim, Taesung & Yannelis, Nicholas C., 1997. "Existence of Equilibrium in Bayesian Games with Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 77(2), pages 330-353, December.
    9. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    10. Angelos Angelopoulos & Leonidas Koutsougeras, 2015. "Value allocation under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 147-167, May.
    11. Timothy Van Zandt & Kaifu Zhang, 2011. "A theorem of the maximin and applications to Bayesian zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 289-308, May.
    12. Noguchi, Mitsunori, 2018. "Alpha cores of games with nonatomic asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 1-12.

  16. Balder, Erik J, 1991. "On Cournot-Nash Equilibrium Distributions for Games with Differential Information and Discontinuous Payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(4), pages 339-354, October.

    Cited by:

    1. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    2. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    3. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
    4. Kim, Taesung & Yannelis, Nicholas C., 1997. "Existence of Equilibrium in Bayesian Games with Infinitely Many Players," Journal of Economic Theory, Elsevier, vol. 77(2), pages 330-353, December.
    5. Balder, E. J., 1996. "Comments on the existence of equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 25(3), pages 307-323.
    6. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
    7. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

  17. Balder, Erik J., 1989. "On compactness of the space of policies in stochastic dynamic programming," Stochastic Processes and their Applications, Elsevier, vol. 32(1), pages 141-150, June.

    Cited by:

    1. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    2. Richard Chen & Eugene Feinberg, 2010. "Compactness of the space of non-randomized policies in countable-state sequential decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 307-323, April.

  18. Balder, E. J., 1985. "Elimination of randomization in statistical decision theory reconsidered," Journal of Multivariate Analysis, Elsevier, vol. 16(2), pages 260-264, April.

    Cited by:

    1. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    2. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.

  19. Balder, E. J., 1980. "An extension of the usual model in statistical decision theory with applications to stochastic optimization problems," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 385-397, September.

    Cited by:

    1. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2012. "Stationary Markovian equilibrium in altruistic stochastic OLG models with limited commitment," Journal of Mathematical Economics, Elsevier, vol. 48(2), pages 115-132.
    2. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
    3. A. S. Nowak, 2010. "On a Noncooperative Stochastic Game Played by Internally Cooperating Generations," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 88-106, January.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Erik J. Balder should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.