IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v151y2014icp411-447.html
   My bibliography  Save this article

Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models

Author

Listed:
  • Jaśkiewicz, Anna
  • Nowak, Andrzej S.

Abstract

In this paper, we study intergenerational stochastic games that can be viewed as a special class of overlapping generations models under uncertainty. Making use of the theorem of Dvoretzky, Wald and Wolfowitz [27] from the statistical decision theory, we obtain new results on stationary Markov perfect equilibria for the aforementioned games, with a general state space, satisfying rather mild continuity and compactness conditions. A novel feature of our approach is the fact that we consider risk averse generations in the sense that they aggregate partial utilities using an exponential function. As a byproduct, we also provide a new existence theorem for intergenerational stochastic game within the standard framework where the aggregator is linear. Our assumptions imposed on the transition probability and utility functions allow to embrace a pretty large class of intergenerational stochastic games analysed recently in macroeconomics. Finally, we formulate a set of assumptions under which the stochastic process induced by the stationary Markov perfect equilibrium possesses an invariant distribution.

Suggested Citation

  • Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
  • Handle: RePEc:eee:jetheo:v:151:y:2014:i:c:p:411-447
    DOI: 10.1016/j.jet.2014.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053114000180
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Krusell & Anthony A. Smith, Jr., 2003. "Consumption--Savings Decisions with Quasi--Geometric Discounting," Econometrica, Econometric Society, vol. 71(1), pages 365-375, January.
    2. Amir, Rabah, 1996. "Strategic Intergenerational Bequests with Stochastic Convex Production," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 367-376, August.
    3. Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic stability in monotone economies," Theoretical Economics, Econometric Society, vol. 9(2), May.
    4. Duffie, Darrell, et al, 1994. "Stationary Markov Equilibria," Econometrica, Econometric Society, vol. 62(4), pages 745-781, July.
    5. Parthasarathy, T & Sinha, S, 1989. "Existence of Stationary Equilibrium Strategies in Non-zero Sum Discounted Stochastic Games with Uncountable State Space and State-Independent Transitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 189-194.
    6. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    7. José Luis Montiel Olea & Tomasz Strzalecki, 2014. "Axiomatization and Measurement of Quasi-Hyperbolic Discounting," The Quarterly Journal of Economics, Oxford University Press, vol. 129(3), pages 1449-1499.
    8. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, January.
    9. Wolfgang Leininger, 1986. "The Existence of Perfect Equilibria in a Model of Growth with Altruism between Generations," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 349-367.
    10. repec:spr:compst:v:49:y:1999:i:2:p:299-324 is not listed on IDEAS
    11. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2013. "A constructive geometrical approach to the uniqueness of Markov stationary equilibrium in stochastic games of intergenerational altruism," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1019-1039.
    12. repec:spr:compst:v:66:y:2007:i:3:p:513-530 is not listed on IDEAS
    13. Yehuda Levy, 2013. "Discounted Stochastic Games With No Stationary Nash Equilibrium: Two Examples," Econometrica, Econometric Society, vol. 81(5), pages 1973-2007, September.
    14. Karp, Larry, 2005. "Global warming and hyperbolic discounting," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 261-282, February.
    15. Alain Haurie, 2005. "A Multigenerational Game Model to Analyze Sustainable Development," Annals of Operations Research, Springer, vol. 137(1), pages 369-386, July.
    16. John Duggan, 2012. "Noisy Stochastic Games," Econometrica, Econometric Society, vol. 80(5), pages 2017-2045, September.
    17. Balder, E. J., 1980. "An extension of the usual model in statistical decision theory with applications to stochastic optimization problems," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 385-397, September.
    18. John Geanakoplos, 2008. "Overlapping Generations Models of General Equilibrium," Levine's Working Paper Archive 122247000000002225, David K. Levine.
    19. Anderson, Evan W. & Hansen, Lars Peter & Sargent, Thomas J., 2012. "Small noise methods for risk-sensitive/robust economies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 468-500.
    20. Lars Ljungqvist & Thomas J. Sargent, 2004. "Recursive Macroeconomic Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026212274x, January.
    21. Harris, Christopher & Laibson, David, 2001. "Dynamic Choices of Hyperbolic Consumers," Econometrica, Econometric Society, vol. 69(4), pages 935-957, July.
    22. Monahan, George E. & Sobel, Matthew J., 1997. "Risk-Sensitive Dynamic Market Share Attraction Games," Games and Economic Behavior, Elsevier, vol. 20(2), pages 149-160, August.
    23. Futia, Carl A, 1982. "Invariant Distributions and the Limiting Behavior of Markovian Economic Models," Econometrica, Econometric Society, vol. 50(2), pages 377-408, March.
    24. Horst, Ulrich, 2005. "Stationary equilibria in discounted stochastic games with weakly interacting players," Games and Economic Behavior, Elsevier, vol. 51(1), pages 83-108, April.
    25. Ronald A. Howard & James E. Matheson, 1972. "Risk-Sensitive Markov Decision Processes," Management Science, INFORMS, vol. 18(7), pages 356-369, March.
    26. Amir, Rabah, 1996. "Continuous Stochastic Games of Capital Accumulation with Convex Transitions," Games and Economic Behavior, Elsevier, vol. 15(2), pages 111-131, August.
    27. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2012. "Stationary Markovian equilibrium in altruistic stochastic OLG models with limited commitment," Journal of Mathematical Economics, Elsevier, vol. 48(2), pages 115-132.
    28. Dutta, Prajit K & Sundaram, Rangarajan, 1992. "Markovian Equilibrium in a Class of Stochastic Games: Existence Theorems for Discounted and Undiscounted Models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 197-214, April.
    29. John Geanakoplos, 2008. "Overlapping Generations Models of General Equilibrium," Cowles Foundation Discussion Papers 1663, Cowles Foundation for Research in Economics, Yale University.
    30. Rolando Cavazos-Cadena & Emmanuel Fernández-Gaucherand, 1999. "Controlled Markov chains with risk-sensitive criteria: Average cost, optimality equations, and optimal solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(2), pages 299-324, April.
    31. Curtat, Laurent O., 1996. "Markov Equilibria of Stochastic Games with Complementarities," Games and Economic Behavior, Elsevier, vol. 17(2), pages 177-199, December.
    32. Hori, Hajime, 1997. "Dynamic Allocation in an Altruistic Overlapping Generations Economy," Journal of Economic Theory, Elsevier, vol. 73(2), pages 292-315, April.
    33. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    34. Balder, E. J., 1985. "Elimination of randomization in statistical decision theory reconsidered," Journal of Multivariate Analysis, Elsevier, vol. 16(2), pages 260-264, April.
    35. E. S. Phelps & R. A. Pollak, 1968. "On Second-Best National Saving and Game-Equilibrium Growth," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 185-199.
    36. Andrzej Nowak, 2007. "On stochastic games in economics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 513-530, December.
    37. anonymous, 2007. "Bank asset growth robust, statistics show," Financial Update, Federal Reserve Bank of Atlanta.
    38. Andrzej Nowak, 2006. "On perfect equilibria in stochastic models of growth with intergenerational altruism," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 73-83, May.
    39. Andrzej Nowak, 2003. "On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 121-132, December.
    40. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    41. Lars Peter Hansen & Thomas J. Sargent, 2007. "Introduction to Robustness," Introductory Chapters,in: Robustness Princeton University Press.
    42. Peled, Dan, 1985. "Stochastic inflation and government provision of indexed bonds," Journal of Monetary Economics, Elsevier, vol. 15(3), pages 291-308, May.
    43. Caravani, Paolo & Papavassilopoulos, George, 1990. "A class of risk-sensitive noncooperative games," Journal of Economic Dynamics and Control, Elsevier, vol. 14(1), pages 117-149, February.
    44. Harris, Christopher & Reny, Philip & Robson, Arthur, 1995. "The Existence of Subgame-Perfect Equilibrium in Continuous Games with Almost Perfect Information: A Case for Public Randomization," Econometrica, Econometric Society, vol. 63(3), pages 507-544, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kap:theord:v:84:y:2018:i:4:d:10.1007_s11238-017-9619-7 is not listed on IDEAS
    2. Balbus, Łukasz & Jaśkiewicz, Anna & Nowak, Andrzej S., 2016. "Non-paternalistic intergenerational altruism revisited," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 27-33.
    3. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    4. repec:eee:jetheo:v:169:y:2017:i:c:p:35-61 is not listed on IDEAS
    5. Łukasz Balbus & Łukasz Woźny, 2016. "A Strategic Dynamic Programming Method for Studying Short-Memory Equilibria of Stochastic Games with Uncountable Number of States," Dynamic Games and Applications, Springer, vol. 6(2), pages 187-208, June.
    6. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    7. Balbus, Łukasz & Jaśkiewicz, Anna & Nowak, Andrzej S., 2015. "Stochastic bequest games," Games and Economic Behavior, Elsevier, vol. 90(C), pages 247-256.
    8. Elena M. Parilina & Alessandro Tampieri, 2018. "Stability and cooperative solution in stochastic games," Theory and Decision, Springer, vol. 84(4), pages 601-625, June.
    9. repec:spr:joptap:v:165:y:2015:i:1:d:10.1007_s10957-014-0555-1 is not listed on IDEAS
    10. Cingiz, Kutay & Flesch, Janos & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2016. "Perfect Information Games where Each Player Acts Only Once," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).

    More about this item

    Keywords

    Overlapping generations model; Intergenerational stochastic game; Risk sensitive optimisation; Stationary Markov perfect equilibrium;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:151:y:2014:i:c:p:411-447. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.