IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Continuous Stochastic Games of Capital Accumulation with Convex Transitions

  • Amir, Rabah

\Ve consider a discounter stochastic game of common-property capital accumulation with nonsymetric players. bounded Due-period extraction capacities, and a transition law satisfying a general strong convexity condition. We show that the infinite-horizon problem has a Markov-stationary (subgame-perfect) equilibrium and that every finite horizon transaction has a unique Markovian equilibrium, hoth in consumption functions which are continuous, non decreasing and have all slopes bounded above by 1. Unlike previous results in strategic dynamic models, these properties are reminiscent of the corresponding optimal growth model.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6WFW-45MH06H-1B/2/1d00487002e76e6385ade99d71a06777
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 15 (1996)
Issue (Month): 2 (August)
Pages: 111-131

as
in new window

Handle: RePEc:eee:gamebe:v:15:y:1996:i:2:p:111-131
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/622836

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:15:y:1996:i:2:p:111-131. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.