IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v144y2009i3p1300-1319.html
   My bibliography  Save this article

On the existence of pure-strategy equilibria in large games

Author

Listed:
  • Carmona, Guilherme
  • Podczeck, Konrad

Abstract

Over the years, several formalizations and existence results for games with a continuum of players have been given. These include those of Schmeidler [D. Schmeidler, Equilibrium points of nonatomic games, J. Stat. Phys. 4 (1973) 295-300], Rashid [S. Rashid, Equilibrium points of non-atomic games: Asymptotic results, Econ. Letters 12 (1983) 7-10], Mas-Colell [A. Mas-Colell, On a theorem by Schmeidler, J. Math. Econ. 13 (1984) 201-206], Khan and Sun [M. Khan, Y. Sun, Non-cooperative games on hyperfinite Loeb spaces, J. Math. Econ. 31 (1999) 455-492] and Podczeck [K. Podczeck, On purification of measure-valued maps, Econ. Theory 38 (2009) 399-418]. The level of generality of each of these existence results is typically regarded as a criterion to evaluate how appropriate is the corresponding formalization of large games. In contrast, we argue that such evaluation is pointless. In fact, we show that, in a precise sense, all the above existence results are equivalent. Thus, all of them are equally strong and therefore cannot rank the different formalizations of large games.

Suggested Citation

  • Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
  • Handle: RePEc:eee:jetheo:v:144:y:2009:i:3:p:1300-1319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(08)00169-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carmona, Guilherme, 2004. "Nash Equilibria of Games with a Continuum of Players," FEUNL Working Paper Series wp466, Universidade Nova de Lisboa, Faculdade de Economia.
    2. Podczeck, Konrad, 2008. "On the convexity and compactness of the integral of a Banach space valued correspondence," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 836-852, July.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, pages 13-46.
    4. Wooders, Myrna & Cartwright, Edward & Selten, Reinhard, 2006. "Behavioral conformity in games with many players," Games and Economic Behavior, Elsevier, vol. 57(2), pages 347-360, November.
    5. Rashid, Salim, 1983. "Equilibrium points of non-atomic games : Asymptotic results," Economics Letters, Elsevier, vol. 12(1), pages 7-10.
    6. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    7. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    8. Starr, Ross M, 1969. "Quasi-Equilibria in Markets with Non-Convex Preferences," Econometrica, Econometric Society, vol. 37(1), pages 25-38, January.
    9. Carmona, Guilherme, 2004. "On the purification of Nash equilibria of large games," Economics Letters, Elsevier, vol. 85(2), pages 215-219, November.
    10. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    11. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    12. Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
    13. Al-Najjar, Nabil I., 2008. "Large games and the law of large numbers," Games and Economic Behavior, Elsevier, vol. 64(1), pages 1-34, September.
    14. Carmona, Guilherme, 2008. "Large games with countable characteristics," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 344-347, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haomiao Yu, 2014. "Rationalizability in large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 457-479, February.
    2. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    3. Bodoh-Creed, Aaron, 2013. "Efficiency and information aggregation in large uniform-price auctions," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2436-2466.
    4. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    5. repec:spr:jogath:v:46:y:2017:i:1:d:10.1007_s00182-016-0528-8 is not listed on IDEAS
    6. Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
    7. Aaron Bodoh-Creed & Brent Hickman, 2016. "College Assignment as a Large Contest," Working Papers 2016-27, Becker Friedman Institute for Research In Economics.
    8. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications, Elsevier.
    9. Guilherme Carmona, 2009. "A remark on the measurability of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 491-494, June.
    10. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    11. M. Ali Khan & Kali P. Rath & Yeneng Sun & Haomiao Yu, 2011. "On Large Games with a Bio-Social Typology," Economics Working Paper Archive 585, The Johns Hopkins University,Department of Economics.
    12. M. Ali Khan & Kali P. Rath, 2011. "The Shapley-Folkman Theorem and the Range of a Bounded Measure: An Elementary and Unified Treatment," Economics Working Paper Archive 586, The Johns Hopkins University,Department of Economics.
    13. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.
    14. Michael Greinecker & Konrad Podczeck, 2015. "Purification and roulette wheels," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(2), pages 255-272, February.
    15. Takashi Suzuki, 2016. "A coalitional production economy with infinitely many indivisible commodities," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 35-52, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:144:y:2009:i:3:p:1300-1319. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.