IDEAS home Printed from https://ideas.repec.org/p/unl/unlfep/wp436.html
   My bibliography  Save this paper

On the Purification of Nash Equilibria of Large Games

Author

Listed:
  • Carmona, Guilherme

Abstract

We consider Salim Rashids asymptotic version of David Schmeidlers theorem on the purification of Nash equilibria. We show that, in contrast to what is stated, players payoff functions have to be selected from an equicontinuous family in order for Rashids theorem to hold. That is, a bound on the diversity of payoffs is needed in order for such asymptotic result to be valid.

Suggested Citation

  • Carmona, Guilherme, 2003. "On the Purification of Nash Equilibria of Large Games," FEUNL Working Paper Series wp436, Universidade Nova de Lisboa, Faculdade de Economia.
  • Handle: RePEc:unl:unlfep:wp436
    as

    Download full text from publisher

    File URL: http://fesrvsd.fe.unl.pt/WPFEUNL/WP2003/wp436.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    2. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, vol. 76(1), pages 13-46, September.
    3. Rashid, Salim, 1983. "Equilibrium points of non-atomic games : Asymptotic results," Economics Letters, Elsevier, vol. 12(1), pages 7-10.
    4. Cartwright, Edward & Wooders, Myrna, 2003. "On Equilibrium in Pure Strategies in Games with Many Players," Economic Research Papers 269570, University of Warwick - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    2. Guilherme Carmona, 2003. "Nash and Limit Equilibria of Games with a Continuum of Players," Game Theory and Information 0311004, University Library of Munich, Germany.
    3. Carmona, Guilherme, 2008. "Purification of Bayesian-Nash equilibria in large games with compact type and action spaces," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1302-1311, December.
    4. Carmona, Guilherme, 2006. "A Uni¯ed Approach to the Puri¯cation of Nash Equilibria in Large Games," FEUNL Working Paper Series wp491, Universidade Nova de Lisboa, Faculdade de Economia.
    5. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    6. repec:eee:ecolet:v:162:y:2018:i:c:p:153-156 is not listed on IDEAS
    7. M. Ali Khan & Kali P. Rath, 2011. "The Shapley-Folkman Theorem and the Range of a Bounded Measure: An Elementary and Unified Treatment," Economics Working Paper Archive 586, The Johns Hopkins University,Department of Economics.
    8. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unl:unlfep:wp436. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sean Story). General contact details of provider: http://edirc.repec.org/data/feunlpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.