IDEAS home Printed from https://ideas.repec.org/p/jhu/papers/585.html
   My bibliography  Save this paper

On Large Games with a Bio-Social Typology

Author

Listed:
  • M. Ali Khan
  • Kali P. Rath
  • Yeneng Sun
  • Haomiao Yu

Abstract

We present a comprehensive theory of large non-anonymous games in which agents have a name and a determinate social-type and/or biological trait to resolve the dissonance of a (matching-pennies type) game with an exact pure-strategy Nash equilibrium with finite agents, but without one when modeled on the Lebesgue unit interval. We (i) establish saturated player spaces as both necessary and sufficient for an existence result for Nash equilibrium in pure strategies, (ii) clarify the relationship between pure, mixed and behavioral strategies via the exact law of large numbers in a framework of Fubini extension, (iii) illustrate corresponding asymptotic results.

Suggested Citation

  • M. Ali Khan & Kali P. Rath & Yeneng Sun & Haomiao Yu, 2011. "On Large Games with a Bio-Social Typology," Economics Working Paper Archive 585, The Johns Hopkins University,Department of Economics.
  • Handle: RePEc:jhu:papers:585
    as

    Download full text from publisher

    File URL: http://econ.jhu.edu/wp-content/uploads/pdf/papers/wp585_khan.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Richard McLean & Andrew Postlewaite, 2002. "Informational Size and Incentive Compatibility," Econometrica, Econometric Society, vol. 70(6), pages 2421-2453, November.
    2. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    3. Peter J. Hammond & Yeneng Sun, 2003. "Monte Carlo simulation of macroeconomic risk with a continuum of agents: the symmetric case," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(2), pages 743-766, March.
    4. Yu, Haomiao & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with countable actions," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 192-200, February.
    5. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Yannis M. Ioannides, 2010. "Identification of Social Interactions," Discussion Papers Series, Department of Economics, Tufts University 0754, Department of Economics, Tufts University.
    6. Rashid, Salim, 1983. "Equilibrium points of non-atomic games : Asymptotic results," Economics Letters, Elsevier, vol. 12(1), pages 7-10.
    7. George-Marios Angeletos & Alessandro Pavan, 2007. "Dynamic Global Games of Regime Change: Learning, Multiplicity and Timing of Attacks," Discussion Papers 1497, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    8. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    9. Edward Cartwright & Myrna Wooders, 2009. "On purification of equilibrium in Bayesian games and expost Nash equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 127-136, March.
    10. George A. Akerlof & Rachel E. Kranton, 2000. "Economics and Identity," The Quarterly Journal of Economics, Oxford University Press, vol. 115(3), pages 715-753.
    11. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 235-260.
    12. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    13. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    14. Robert J. Aumann & Jacques H. Dreze, 2008. "Rational Expectations in Games," American Economic Review, American Economic Association, vol. 98(1), pages 72-86, March.
    15. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    16. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    17. George A. Akerlof & Rachel E. Kranton, 2002. "Identity and Schooling: Some Lessons for the Economics of Education," Journal of Economic Literature, American Economic Association, vol. 40(4), pages 1167-1201, December.
    18. M. Khan & Kali Rath & Yeneng Sun, 2006. "The Dvoretzky-Wald-Wolfowitz theorem and purification in atomless finite-action games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 91-104, April.
    19. Sun, Yeneng & Zhang, Yongchao, 2009. "Individual risk and Lebesgue extension without aggregate uncertainty," Journal of Economic Theory, Elsevier, vol. 144(1), pages 432-443, January.
    20. Cremer, Jacques & McLean, Richard P, 1985. "Optimal Selling Strategies under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent," Econometrica, Econometric Society, vol. 53(2), pages 345-361, March.
    21. William A. Brock & Steven N. Durlauf, 2010. "Adoption Curves and Social Interactions," Journal of the European Economic Association, MIT Press, vol. 8(1), pages 232-251, March.
    22. Yeneng Sun, 1999. "The complete removal of individual uncertainty: multiple optimal choices and random exchange economies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(3), pages 507-544.
    23. Rui Pascoa, Mario, 1993. "Approximate equilibrium in pure strategies for non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 22(3), pages 223-241.
    24. George-Marios Angeletos & Christian Hellwig & Alessandro Pavan, 2007. "Dynamic Global Games of Regime Change: Learning, Multiplicity, and the Timing of Attacks," Econometrica, Econometric Society, vol. 75(3), pages 711-756, May.
    25. Konrad Podczeck, 2010. "On existence of rich Fubini extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 1-22, October.
    26. Sun, Yeneng, 2006. "The exact law of large numbers via Fubini extension and characterization of insurable risks," Journal of Economic Theory, Elsevier, vol. 126(1), pages 31-69, January.
    27. Mario Rui Pascoa, 1998. "Nash equilibrium and the law of large numbers," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2015. "Differential information in large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 201-243, May.
    2. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    4. Haifeng Fu & Ying Xu & Luyi Zhang, 2016. "Pure-strategy Nash equilibria in large games: characterization and existence," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(3), pages 685-697, August.
    5. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    6. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    7. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (None). General contact details of provider: http://edirc.repec.org/data/dejhuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.