IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/22119.html
   My bibliography  Save this paper

Purification, Saturation and the Exact Law of Large Numbers

Author

Listed:
  • Wang, Jianwei
  • Zhang, Yongchao

Abstract

Purification results are important in game theory and statistical decision theory. The purpose of this paper is to prove a general purification theorem that generalizes many authors' results. The key idea of our proof is to make use of the exact law of large numbers. As an application, we show that every mixed strategy in games with finite players, general action spaces, and diffused, conditionally independent incomplete information has many strong purifications.

Suggested Citation

  • Wang, Jianwei & Zhang, Yongchao, 2010. "Purification, Saturation and the Exact Law of Large Numbers," MPRA Paper 22119, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:22119
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/22119/1/MPRA_paper_22119.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    2. Sun, Yeneng, 1998. "A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN1," Journal of Mathematical Economics, Elsevier, vol. 29(4), pages 419-503, May.
    3. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    4. Konrad Podczeck, 2010. "On existence of rich Fubini extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 1-22, October.
    5. Sun, Yeneng, 2006. "The exact law of large numbers via Fubini extension and characterization of insurable risks," Journal of Economic Theory, Elsevier, vol. 126(1), pages 31-69, January.
    6. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    7. Khan, M. Ali & Sun, Yeneng, 2002. "Non-cooperative games with many players," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 46, pages 1761-1808, Elsevier.
    8. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    9. Podczeck, Konrad, 2008. "On the convexity and compactness of the integral of a Banach space valued correspondence," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 836-852, July.
    10. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    11. Khan, M. Ali & Rath, Kali P., 2009. "On games with incomplete information and the Dvoretsky-Wald-Wolfowitz theorem with countable partitions," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 830-837, December.
    12. Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
    13. Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. , & , P. & , & ,, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    2. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    4. He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
    5. Lei Qiao & Yeneng Sun & Zhixiang Zhang, 2016. "Conditional exact law of large numbers and asymmetric information economies with aggregate uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(1), pages 43-64, June.
    6. M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
    7. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2016. "Savage games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    8. Michael Greinecker & Konrad Podczeck, 2013. "Purification and Independence," Working Papers 2013-18, Faculty of Economics and Statistics, Universität Innsbruck.
    9. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    10. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    11. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    12. Michael Greinecker & Christopher Kah, 2021. "Pairwise Stable Matching in Large Economies," Econometrica, Econometric Society, vol. 89(6), pages 2929-2974, November.
    13. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.
    14. Yeneng Sun & Lei Wu & Nicholas C. Yannelis, 2013. "Incentive compatibility of rational expectations equilibrium in large economies: a counterexample," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(1), pages 3-10, May.
    15. Michael Greinecker & Konrad Podczeck, 2015. "Purification and roulette wheels," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(2), pages 255-272, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    2. Haomiao Yu, 2014. "Rationalizability in large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 457-479, February.
    3. Michael Greinecker & Konrad Podczeck, 2015. "Purification and roulette wheels," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(2), pages 255-272, February.
    4. , & , P. & , & ,, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    5. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    6. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    7. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    8. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    9. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    11. Michael Greinecker & Konrad Podczeck, 2013. "Purification and Independence," Working Papers 2013-18, Faculty of Economics and Statistics, Universität Innsbruck.
    12. Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
    13. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.
    14. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    15. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    16. Wu, Bin, 2022. "On pure-strategy Nash equilibria in large games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 305-315.
    17. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    18. M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
    19. Jian Yang, 2021. "Analysis of Markovian Competitive Situations Using Nonatomic Games," Dynamic Games and Applications, Springer, vol. 11(1), pages 184-216, March.
    20. Sun, Xiang & Zeng, Yishu, 2020. "Perfect and proper equilibria in large games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 288-308.

    More about this item

    Keywords

    Exact law of large numbers; Fubini extension; Incomplete information; Purification; Saturated probability space;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.