IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v46y2017i1d10.1007_s00182-016-0528-8.html
   My bibliography  Save this article

Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result

Author

Listed:
  • M. Ali Khan

    () (The Johns Hopkins University)

  • Yongchao Zhang

    () (Shanghai University of Finance and Economics
    Ministry of Education)

Abstract

Abstract In earlier work, the authors showed that a pure-strategy Bayesian-Nash equilibria in games with uncountable action sets and atomless private information spaces may not exist if the information space of each player is not saturated. This paper sharpens this result by exhibiting a failure of the existence claim for a game in which the information space of only one player is not saturated. The methodology that enables this extension of the necessity theory is novel relative to earlier work, and its conceptual underpinnings may have independent interest.

Suggested Citation

  • M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
  • Handle: RePEc:spr:jogath:v:46:y:2017:i:1:d:10.1007_s00182-016-0528-8
    DOI: 10.1007/s00182-016-0528-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-016-0528-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianwei Wang & Yongchao Zhang, 2012. "Purification, saturation and the exact law of large numbers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 527-545, August.
    2. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    4. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    5. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    6. Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
    7. M. Khan & Kali Rath & Yeneng Sun, 2006. "The Dvoretzky-Wald-Wolfowitz theorem and purification in atomless finite-action games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 91-104, April.
    8. Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
    9. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    10. Haifeng Fu, 2008. "Mixed-strategy equilibria and strong purification for games with private and public information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 521-532, December.
    11. He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
    12. Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian games; Pure-strategy Nash equilibrium (PSNE); Khan-Rath-Sun game (KRS game); Saturated probability spaces;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D50 - Microeconomics - - General Equilibrium and Disequilibrium - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:46:y:2017:i:1:d:10.1007_s00182-016-0528-8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.