IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v58y2009i1p132-141.html
   My bibliography  Save this article

Pure strategy equilibria in large demographic summary games

Author

Listed:
  • Kolpin, Van

Abstract

Many economic environments involve interaction between small numbers of large players as well as large numbers of small players whose individual actions are macroscopically negligible even while summary behavior within various demographic groups may impact the entire economy. We examine Nash equilibria of such mixed size, multi-demographic summary games. In particular, we establish existence theorems for equilibria in which small players universally pursue pure strategies, even when large player behavior must be simultaneously considered.

Suggested Citation

  • Kolpin, Van, 2009. "Pure strategy equilibria in large demographic summary games," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 132-141, July.
  • Handle: RePEc:eee:matsoc:v:58:y:2009:i:1:p:132-141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(09)00042-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Haomiao Yu & Wei Zhu, 2005. "Large games with transformed summary statistics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 237-241, July.
    3. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    4. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, vol. 76(1), pages 13-46, September.
    5. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    6. Michael T. Rauh, 2003. "Non-cooperative games with a continuum of players whose payoffs depend on summary statistics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 901-906, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolpin, Van, 2014. "Endogenous convention, prejudice, and trust in demographic summary games," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 128-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    2. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    3. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    4. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Schmeidler, David, 2022. "Equilibria of nonatomic anonymous games," Games and Economic Behavior, Elsevier, vol. 135(C), pages 110-131.
    5. Jara-Moroni, Pedro, 2012. "Rationalizability in games with a continuum of players," Games and Economic Behavior, Elsevier, vol. 75(2), pages 668-684.
    6. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    7. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    8. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    9. Haomiao Yu, 2014. "Rationalizability in large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 457-479, February.
    10. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    11. Askoura, Y., 2011. "The weak-core of a game in normal form with a continuum of players," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 43-47, January.
    12. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    13. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.
    14. Jara-Moroni, Pedro, 2018. "Rationalizability and mixed strategies in large games," Economics Letters, Elsevier, vol. 162(C), pages 153-156.
    15. Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
    16. D'Agata, Antonio, 2005. "Star-shapedness of Richter-Aumann integral on a measure space with atoms: theory and economic applications," Journal of Economic Theory, Elsevier, vol. 120(1), pages 108-128, January.
    17. Roughgarden, Tim & Tardos, Eva, 2004. "Bounding the inefficiency of equilibria in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 389-403, May.
    18. Blonski, Matthias, 2000. "Characterization of pure strategy equilibria in finite anonymous games," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 225-233, October.
    19. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    20. Edward Cartwright & Myrna Wooders, 2009. "On purification of equilibrium in Bayesian games and expost Nash equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 127-136, March.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:58:y:2009:i:1:p:132-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.