IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Univariate and multivariate stochastic volatility models: estimation and diagnostics"

by Liesenfeld, Roman & Richard, Jean-Francois

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window

  1. Marimoutou, Vêlayoudom & Soury, Manel, 2015. "Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model," Energy, Elsevier, vol. 88(C), pages 417-429.
  2. Siem Jan Koopman & André Lucas & André Monteiro, 2005. "The Multi-State Latent Factor Intensity Model for Credit Rating Transitions," Tinbergen Institute Discussion Papers 05-071/4, Tinbergen Institute, revised 04 Jul 2005.
  3. Siem Jan Koopman & Rutger Lit & Andre Lucas, 2015. "Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model," Tinbergen Institute Discussion Papers 15-076/IV/DSF94, Tinbergen Institute.
  4. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
  5. Jean-François Richard, 2015. "Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables," Working Paper 5778, Department of Economics, University of Pittsburgh.
  6. Hautsch, Nikolaus & Ou, Yangguoyi, 2009. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," CFS Working Paper Series 2009/03, Center for Financial Studies (CFS).
  7. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
  8. Veiga, Helena & Ruiz, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
  9. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  10. Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009. "Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers 20-2009, Singapore Management University, School of Economics.
  11. Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
  12. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
  13. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
  14. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.
  15. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW).
  16. Jun Yu & Renate Meyer, 2004. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Working Papers 23-2004, Singapore Management University, School of Economics.
  17. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
  18. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
  19. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 2008-03, Universite de Montreal, Departement de sciences economiques.
  20. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
  21. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
  22. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
  23. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
  24. Venter, J.H. & de Jongh, P.J., 2014. "Extended stochastic volatility models incorporating realised measures," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 687-707.
  25. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011,11, Christian-Albrechts-University of Kiel, Department of Economics.
  26. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, 01.
  27. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
  28. Mustafa Hakan Eratalay, 2012. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," EUSP Department of Economics Working Paper Series Ec-04/12, European University at St. Petersburg, Department of Economics.
  29. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
  30. BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," CORE Discussion Papers 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  31. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004,12, Christian-Albrechts-University of Kiel, Department of Economics.
  32. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW).
  33. M. Shelton Peiris & Manabu Asai, 2016. "Generalized Fractional Processes with Long Memory and Time Dependent Volatility Revisited," Econometrics, MDPI, Open Access Journal, vol. 4(3), pages 1-21, September.
  34. Steffen Henzel & Malte Rengel, 2013. "Dimensions of macroeconomic uncertainty: A common factor analysis," Ifo Working Paper Series Ifo Working Paper No. 167, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  35. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, Marseille, France.
  36. BAUWENS, Luc & HAUTSCH, Nikolaus, "undated". "Stochastic conditional intensity processes," CORE Discussion Papers RP 1937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  37. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  38. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
  39. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
  40. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
  41. Suhejla Hoiti & Esfandiar Maasoumi & Michael McAleer & Daniel Slottje, 2005. "Measuring the Volatility in U.S. Treasury Benchmarks and Debt Instruments," DEA Working Papers 14, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  42. Nikolaus Hautsch, 2007. "Capturing Common Components in High-Frequency Financial Time Series: A Multivariate Stochastic Multiplicative Error Model," SFB 649 Discussion Papers SFB649DP2007-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  43. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
  44. António Alberto Santos, 2015. "The evolution of the Volatility in Financial Returns: Realized Volatility vs Stochastic Volatility Measures," GEMF Working Papers 2015-10, GEMF, Faculty of Economics, University of Coimbra.
  45. repec:pit:wpaper:322 is not listed on IDEAS
  46. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, 09.
  47. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
  48. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
  49. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 15(3), pages 94-138.
  50. Escribano, Álvaro & Blazsek, Szabolcs, 2009. "Knowledge spillovers in U.S. patents: a dynamic patent intensity model with secret common innovation factors," UC3M Working papers. Economics we098951, Universidad Carlos III de Madrid. Departamento de Economía.
  51. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
  52. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data : Modelling and Estimation," Economics Working Papers 2005,08, Christian-Albrechts-University of Kiel, Department of Economics.
  53. repec:kie:kieliw:1737 is not listed on IDEAS
  54. Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2012. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 12-2012, Singapore Management University, School of Economics.
  55. repec:knz:cofedp:0702 is not listed on IDEAS
  56. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  57. Arie Preminger & Christian M. Hafner, 2006. "Deciding Between Garch And Stochastic Volatility Via Strong Decision Rules," Working Papers 0603, Ben-Gurion University of the Negev, Department of Economics.
  58. Hafner Christian M. & Manner Hans, 2008. "Dynamic stochastic copula models: Estimation, inference and applications," Research Memorandum 043, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  59. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
  60. Escribano, Álvaro & Blazsek, Szabolcs, 2012. "Patents, secret innovations and firm's rate of return : differential effects of the innovation leader," UC3M Working papers. Economics we1202, Universidad Carlos III de Madrid. Departamento de Economía.
  61. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
  62. Ruiz, Esther & Veiga, Helena & Mao, Xiuping, 2014. "Score driven asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws142618, Universidad Carlos III de Madrid. Departamento de Estadística.
  63. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2013. "SV Mixture, Classification Using EM Algorithm," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(4), pages 553-559, April.
  64. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
  65. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
  66. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
  67. Richard, Oliver & Van Horn, Larry, 2004. "Persistence in prescriptions of branded drugs," International Journal of Industrial Organization, Elsevier, vol. 22(4), pages 523-540, April.
  68. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  69. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  70. Pierre Collin-Dufresne & Christopher S. Jones & Robert S. Goldstein, 2004. "Can Interest Rate Volatility be Extracted from the Cross Section of Bond Yields? An Investigation of Unspanned Stochastic Volatility," NBER Working Papers 10756, National Bureau of Economic Research, Inc.
  71. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models : from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
  72. Dao, Chi-Mai & Wolters, Jürgen, 2008. "Common stochastic volatility trends in international stock returns," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 431-445, June.
  73. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  74. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," CORE Discussion Papers 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  75. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
  76. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
  77. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
  78. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
  79. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  80. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
  81. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54841, University Library of Munich, Germany.
  82. Manner, Hans & Segers, Johan, 2011. "Tails of correlation mixtures of elliptical copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 153-160, January.
  83. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
  84. repec:hal:journl:peer-00732533 is not listed on IDEAS
  85. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Patent propensity, R&D and market competition: Dynamic spillovers of innovation leaders and followers," Journal of Econometrics, Elsevier, vol. 191(1), pages 145-163.
  86. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
  87. repec:kie:kieliw:1594 is not listed on IDEAS
  88. Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW).
  89. Nikolaus Hautsch & Yangguoyi Ou, 2008. "Discrete-Time Stochastic Volatility Models and MCMC-Based Statistical Inference," SFB 649 Discussion Papers SFB649DP2008-063, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  90. Carles Bret\'o, 2013. "On idiosyncratic stochasticity of financial leverage effects," Papers 1312.5496, arXiv.org.
  91. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
  92. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
  93. Ozturk, Serda Selin & Richard, Jean-Francois, 2015. "Stochastic volatility and leverage: Application to a panel of S&P500 stocks," Finance Research Letters, Elsevier, vol. 12(C), pages 67-76.
  94. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
  95. PREMINGER, Arie & HAFNER, Christian M., 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," CORE Discussion Papers 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  96. Vasyl Golosnoy, 2007. "Sequential monitoring of minimum variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 39-55, March.
  97. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
  98. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
  99. Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
  100. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
  101. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
  102. Durham, Garland B., 2007. "SV mixture models with application to S&P 500 index returns," Journal of Financial Economics, Elsevier, vol. 85(3), pages 822-856, September.
  103. Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
  104. Blazsek, Szabolcs & Escribano, Álvaro, 2014. "Propensity to patent, R&D and market competition : dynamic spillovers of innovation leaders and followers," UC3M Working papers. Economics we1412, Universidad Carlos III de Madrid. Departamento de Economía.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.