IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On idiosyncratic stochasticity of financial leverage effects

  • Carles Bret\'o
Registered author(s):

    We model leverage as stochastic but independent of return shocks and of volatility and perform likelihood-based inference via the recently developed iterated filtering algorithm using S&P500 data, contributing new evidence to the still slim empirical support for random leverage variation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1312.5496
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1312.5496.

    as
    in new window

    Length:
    Date of creation: Dec 2013
    Date of revision:
    Publication status: Published in Statistics & Probability Letters 91 (2014) 20-26
    Handle: RePEc:arx:papers:1312.5496
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, March.
    2. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    3. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, School of Economics and Management, University of Aarhus.
    4. Jun Yu, 2004. "On Leverage in a Stochastic Volatility Model," Working Papers 13-2004, Singapore Management University, School of Economics.
    5. Borus Jungbacker & Siem Jan Koopman, 2007. "Monte Carlo Estimation for Nonlinear Non-Gaussian State Space Models," Biometrika, Biometrika Trust, vol. 94(4), pages 827-839.
    6. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    7. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
    8. Jun Yu, 2008. "A Semiparametric Stochastic Volatility Model," Working Papers CoFie-04-2008, Sim Kee Boon Institute for Financial Economics.
    9. Yu-Sheng Lai & Her-Jiun Sheu, 2011. "On the importance of asymmetries for dynamic hedging during the subprime crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 21(11), pages 801-813.
    10. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
    11. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
    12. Ulrich K. Müller & Philippe-Emmanuel. Petalas, 2010. "Efficient Estimation of the Parameter Path in Unstable Time Series Models," Review of Economic Studies, Oxford University Press, vol. 77(4), pages 1508-1539.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.5496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.