IDEAS home Printed from https://ideas.repec.org/f/c/pal412.html
   My authors  Follow this author

Vicent Alcantara

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

  2. Lourdes Isabel Patiño & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2019. "Driving forces of CO2 emissions and energy intensity in Colombia," Working Papers wpdea1905, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Florian Marcel Nuţă & Alina Cristina Nuţă & Cristina Gabriela Zamfir & Stefan-Mihai Petrea & Dan Munteanu & Dragos Sebastian Cristea, 2021. "National Carbon Accounting—Analyzing the Impact of Urbanization and Energy-Related Factors upon CO 2 Emissions in Central–Eastern European Countries by Using Machine Learning Algorithms and Panel Data," Energies, MDPI, vol. 14(10), pages 1-23, May.
    2. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    3. Rifat Nahrin & Md. Hasanur Rahman & Shapan Chandra Majumder & Miguel Angel Esquivias, 2023. "Economic Growth and Pollution Nexus in Mexico, Colombia, and Venezuela (G-3 Countries): The Role of Renewable Energy in Carbon Dioxide Emissions," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    5. Jiang, Qichuan & Ma, Xuejiao & Wang, Yun, 2021. "How does the one belt one road initiative affect the green economic growth?," Energy Economics, Elsevier, vol. 101(C).
    6. Eric Fosu Oteng-Abayie & Foster Awindolla Asaki & Maame Esi Eshun & Eric Abokyi, 2022. "Decomposition of the decoupling of CO2 emissions from economic growth in Ghana," Future Business Journal, Springer, vol. 8(1), pages 1-13, December.
    7. Arunava Bandyopadhyay & Soumen Rej & Kashif Raza Abbasi & Ashar Awan, 2023. "Nexus between tourism, hydropower, and CO2 emissions in India: fresh insights from ARDL and cumulative fourier frequency domain causality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10903-10927, October.
    8. Olimjon Saidmamatov & Nicolas Tetreault & Dilmurad Bekjanov & Elbek Khodjaniyazov & Ergash Ibadullaev & Yuldoshboy Sobirov & Lugas Raka Adrianto, 2023. "The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models," Energies, MDPI, vol. 16(7), pages 1-20, April.
    9. Qingquan Jiang & Jinhuang Lin & Qianqian Wei & Rui Zhang & Hongzhen Fu, 2023. "Demystifying the Economic Growth and CO 2 Nexus in Fujian’s Key Industries Based on Decoupling and LMDI Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    10. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    11. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    12. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    13. Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).

  3. Lourdes Isabel Patiño & Emilio Padilla Rosa & Vicent Alcántara Escolano & Josep Lluís Raymond Bara, 2019. "The relation of GDP per capita with energy and CO2 emissions in Colombia," Working Papers wpdea1904, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Vanesa Zorrilla-Muñoz & Marc Petz & María Silveria Agulló-Tomás, 2021. "GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4675-4697, March.

  4. Vicent Alcántara & Emilio Padilla & Matias Piaggio, 2016. "NOx emissions and productive structure in Spain: An input–output perspective," Documentos de Trabajo (working papers) 16-02, Instituto de Economía - IECON.

    Cited by:

    1. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).
    2. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.
    3. Grace Nishimwe & Didier Milindi Rugema & Claudine Uwera & Cor Graveland & Jesper Stage & Swaib Munyawera & Gabriel Ngabirame, 2020. "Natural Capital Accounting for Land in Rwanda," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    4. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.

  5. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Hoa Thi Nguyen & Naoya Kojima & Akihiro Tokai, 2019. "An input–output linear programming model for assessing climate policy considering economic growth," Environment Systems and Decisions, Springer, vol. 39(1), pages 34-48, March.
    2. Javier Asensio & Andrés Gómez-Lobo & Anna Matas, 2013. "How effective are policies to reduce gasoline consumption? Evaluating a quasi-natural experiment in Spain," Working Papers 2013/9, Institut d'Economia de Barcelona (IEB).

  6. Juan Antonio Duro Moreno & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2009. "La desigualdad en las intensidades energéticas y la composición de la producción. Un análisis para los países de la OCDE," Working Papers wpdea0905, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.

  7. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2007. "Subsistemas Input-Output Y Contaminación: Una Aplicación Al Sector Servicios Y Las Emisiones De Co2 En España," Working Papers wpdea0708, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Carmen RAMOS-CARVAJAL & Blanca MORENO-CUARTAS, 2013. "Characterization of Spanish economic sectors from an economic and environmental perspective:Evolution and forecast of greenhouse gas emissions," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 117-134.
    2. Manuel Alejandro Cardenete & Patricia Fuentes Saguar & Clemente Polo, 2013. "Linear General Equilibrium Model of Energy Demand and CO 2 Emissions Generated By the Andalusian Productive System," American Journal of Economics and Business Administration, Science Publications, vol. 4(4), pages 216-226, July.
    3. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.

  8. Jordi Roca Jusmet & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2007. "Actividad económica, consumo final de energía y requerimientos de energía primaria en Cataluña, 1990-2005. Análisis mediante el uso de los balances energéticos desde una perspectiva input-output," Working Papers wpdea0709, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

  9. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis De Las Emisiones De Co2 Y Sus Factores Explicativos En Las Diferentes Áreas Del Mundo," Working Papers wpdea0507, Department of Applied Economics at Universitat Autonoma of Barcelona.

    Cited by:

    1. Slaboch, J. & Hálová, P., 2016. "The Influence of Investment Costs on Biogas Station Development and Their Impact on Greenhouse Gas Emissions from Czech Agriculture," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(4), pages 1-9, December.
    2. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    3. Jos? Aureliano Mart?n Segura & Espigares Jos? Luis Navarro, 2014. "The environmental impact of economic activity on the planet: the role of service activities," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2014(3), pages 53-78.
    4. Emilio Padilla & Juan Antonio Duro, 2011. "Explanatory Factors Of Co2 Per Capita Emission Inequality In The European Union," Working Papers wpdea1107, Department of Applied Economics at Universitat Autonoma of Barcelona.
    5. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    6. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).

Articles

  1. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    See citations under working paper version above.
  2. Buenaño, Edwin & Padilla, Emilio & Alcántara, Vicent, 2021. "Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies," Energy Policy, Elsevier, vol. 158(C).

    Cited by:

    1. Jacek Artur Strojny & Michał Stanisław Chwastek & Elżbieta Badach & Sławomir Jacek Lisek & Piotr Kacorzyk, 2022. "Impacts of COVID-19 on Energy Expenditures of Local Self-Government Units in Poland," Energies, MDPI, vol. 15(4), pages 1-25, February.

  3. Vicent Alcántara & Emilio Padilla, 2021. "CO2 emissions of the construction sector in Spain during the real estate boom: Input–output subsystem analysis and decomposition," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1272-1283, October.
    See citations under working paper version above.
  4. Vicent Alcántara & Emilio Padilla, 2020. "Key sectors in greenhouse gas emissions in Spain: An alternative input–output analysis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 577-588, June.

    Cited by:

    1. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

  5. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.

    Cited by:

    1. Trespalacios, Alfredo & Cortés, Lina M. & Perote, Javier, 2020. "Uncertainty in electricity markets from a semi-nonparametric approach," Energy Policy, Elsevier, vol. 137(C).

  6. Piaggio, Matías & Alcántara, Vicent & Padilla, Emilio, 2015. "The materiality of the immaterial," Ecological Economics, Elsevier, vol. 110(C), pages 1-10.

    Cited by:

    1. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    2. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Céline Merlin-Brogniart & Simon Nadel, 2021. "Specificities of environmental innovation dynamics in service firms: the French case," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 451-473, April.
    4. Du, Huibin & Chen, Zhenni & Peng, Binbin & Southworth, Frank & Ma, Shoufeng & Wang, Yuan, 2019. "What drives CO2 emissions from the transport sector? A linkage analysis," Energy, Elsevier, vol. 175(C), pages 195-204.
    5. Shujahat Haider Hashmi & Fan Hongzhong & Zeeshan Fareed & Roksana Bannya, 2020. "Testing Non-Linear Nexus between Service Sector and CO 2 Emissions in Pakistan," Energies, MDPI, vol. 13(3), pages 1-29, January.
    6. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.
    7. Ren, Qiuzhen & Albrecht, Johan, 2023. "Toward circular economy: The impact of policy instruments on circular economy innovation for European small medium enterprises," Ecological Economics, Elsevier, vol. 207(C).
    8. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    9. Grace Nishimwe & Didier Milindi Rugema & Claudine Uwera & Cor Graveland & Jesper Stage & Swaib Munyawera & Gabriel Ngabirame, 2020. "Natural Capital Accounting for Land in Rwanda," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    10. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    11. Stefan Giljum & Hanspeter Wieland & Stephan Lutter & Martin Bruckner & Richard Wood & Arnold Tukker & Konstantin Stadler, 2016. "Identifying priority areas for European resource policies: a MRIO-based material footprint assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-24, December.

  7. Mat�as Piaggio & Vicent Alc�ntara & Emilio Padilla, 2014. "Greenhouse Gas Emissions And Economic Structure In Uruguay," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 155-176, June.

    Cited by:

    1. Yongke Yuan & Yixing Wang & Yuanying Chi & Feng Jin, 2020. "Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    2. Buenaño, Edwin & Padilla, Emilio & Alcántara, Vicent, 2021. "Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies," Energy Policy, Elsevier, vol. 158(C).
    3. Vicent Alcántara & Emilio Padilla, 2020. "Key sectors in greenhouse gas emissions in Spain: An alternative input–output analysis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 577-588, June.
    4. Junhwan Moon & Eungyeong Yun & Jaebeom Lee, 2020. "Identifying the Sustainable Industry by Input–Output Analysis Combined with CO 2 Emissions: A Time Series Study from 2005 to 2015 in South Korea," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    5. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.
    6. Mfonobong O. Effiong & Chukwuemeka U. Okoye & NwaJesus A. Onyekuru, 2020. "Sectoral Contributions to Carbon Dioxide Equivalent Emissions in the Nigerian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 456-463.

  8. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.

    Cited by:

    1. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    2. Junhwan Moon & Eungyeong Yun & Jaebeom Lee, 2020. "Identifying the Sustainable Industry by Input–Output Analysis Combined with CO 2 Emissions: A Time Series Study from 2005 to 2015 in South Korea," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    3. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    4. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.

  9. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.

    Cited by:

    1. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    2. Isabel-Maria Bodas Freitas & Jojo Jacob & Lili Wang & Zibiao Li, 2023. "Energy use and exporting: an analysis of Chinese firms," Journal of Evolutionary Economics, Springer, vol. 33(1), pages 179-207, January.
    3. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    5. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    6. Huiqin Jiang & Xiao Zhang & Xinxiao Shao & Jianqiang Bao, 2018. "How Do the Industrial Structure Optimization and Urbanization Development Affect Energy Consumption in Zhejiang Province of China?," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    7. Sinha, Avik, 2017. "Inequality of renewable energy generation across OECD countries: A note," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 9-14.
    8. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    9. Montalbano, P. & Nenci, S., 2019. "Energy efficiency, productivity and exporting: Firm-level evidence in Latin America," Energy Economics, Elsevier, vol. 79(C), pages 97-110.
    10. Kakeu, Johnson & Agbo, Maxime, 2022. "International transfer to reduce global inequality and transboundary pollution," Energy Economics, Elsevier, vol. 114(C).
    11. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    12. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    13. Duro, Juan Antonio, 2013. "Weighting vectors and international inequality changes in environmental indicators: An analysis of CO2 per capita emissions and Kaya factors," Energy Economics, Elsevier, vol. 39(C), pages 122-127.
    14. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    15. Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
    16. Duro Moreno, Juan Antonio, 2010. "On the automatic application of inequality indexes in the analysis of the international distribution of environmental indicators," Working Papers 2072/151617, Universitat Rovira i Virgili, Department of Economics.
    17. Zhao, Xueting & Burnett, J. Wesley & Lacombe, Donald J., 2014. "Province-level Convergence of China CO2 Emission Intensity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169403, Agricultural and Applied Economics Association.
    18. Joseph Nyangon & John Byrne & Job Taminiau, 2017. "An assessment of price convergence between natural gas and solar photovoltaic in the U.S. electricity market," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    19. Chang, Chun-Ping & Wen, Jun & Zheng, Mingbo & Dong, Minyi & Hao, Yu, 2018. "Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries," Economic Modelling, Elsevier, vol. 72(C), pages 65-77.
    20. Bashir, Muhammad Adnan & Sheng, Bin & Doğan, Buhari & Sarwar, Suleman & Shahzad, Umer, 2020. "Export product diversification and energy efficiency: Empirical evidence from OECD countries," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 232-243.
    21. Grunewald, Nicole & Jakob, Michael & Mouratiadou, Ioanna, 2013. "Decomposing Inequality in CO2 Emissions: the Role of Primary Energy Carriers and Economic Sectors," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79779, Verein für Socialpolitik / German Economic Association.
    22. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    23. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    24. Hao Chen & Erdan Wang & Nuo Wang & Tao Song, 2023. "Research on Embodied Carbon Transfer Measurement and Carbon Compensation among Regions in China," IJERPH, MDPI, vol. 20(3), pages 1-20, February.
    25. Simone Marsiglio & Alberto Ansuategi & Maria Carmen Gallastegui, 2016. "The Environmental Kuznets Curve and the Structural Change Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 265-288, February.
    26. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    27. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    28. Eirini Stergiou & Nikos Rigas & Eftychia Zaroutieri & Konstantinos Kounetas, 2023. "Energy, renewable and technical efficiency convergence: a global evidence," Economic Change and Restructuring, Springer, vol. 56(3), pages 1601-1628, June.
    29. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    30. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    31. Calcagnini, Giorgio & Giombini, Germana & Travaglini, Giuseppe, 2016. "Modelling energy intensity, pollution per capita and productivity in Italy: A structural VAR approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1482-1492.
    32. Emilio Padilla & Juan Antonio Duro, 2011. "Explanatory Factors Of Co2 Per Capita Emission Inequality In The European Union," Working Papers wpdea1107, Department of Applied Economics at Universitat Autonoma of Barcelona.
    33. Gregor Semieniuk & Isabella M. Weber, 2019. "Inequality in Energy Consumption: Statistical Equilibrium or a Question of Accounting Conventions?," Working Papers 228, Department of Economics, SOAS University of London, UK.
    34. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    35. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    36. Duro, Juan Antonio, 2015. "The international distribution of energy intensities: Some synthetic results," Energy Policy, Elsevier, vol. 83(C), pages 257-266.
    37. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    38. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    39. Bartosz Jóźwik & Antonina-Victoria Gavryshkiv & Kinga Galewska, 2022. "Do Urbanization and Energy Consumption Change the Role in Environmental Degradation in the European Union Countries?," Energies, MDPI, vol. 15(17), pages 1-14, September.
    40. Zhang, Dongyang, 2022. "Environmental regulation, green innovation, and export product quality: What is the role of greenwashing?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    41. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    42. Miguel Blanco & Marcos Ferasso & Lydia Bares, 2021. "Evaluation of the Effects on Regional Production and Employment in Spain of the Renewable Energy Plan 2011–2020," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    43. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    44. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    45. Trinh, Hai Hong & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Vo, Diem Thi Hong, 2022. "Examining the heterogeneity of financial development in the energy-environment nexus in the era of climate change: Novel evidence around the world," Energy Economics, Elsevier, vol. 116(C).
    46. Jean‐François Ruault & Yves Schaeffer, 2020. "Scalable shift‐share analysis: Novel framework and application to France," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1667-1690, December.
    47. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    48. Jordi Teixidó-Figueras & Juan Duro, 2015. "International Ecological Footprint Inequality: A Methodological Review and Some Results," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 607-631, April.
    49. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    50. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    51. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    52. Bongseok Choi & Wooyoung Park & Bok-Keun Yu, 2015. "Energy Efficiency and Firm Growth," Working Papers 2015-28, Economic Research Institute, Bank of Korea.
    53. Doğan, Buhari & Ferraz, Diogo & Gupta, Monika & Duc Huynh, Toan Luu & Shahzadi, Irum, 2022. "Exploring the effects of import diversification on energy efficiency: Evidence from the OECD economies," Renewable Energy, Elsevier, vol. 189(C), pages 639-650.
    54. Mussini, Mauro & Grossi, Luigi, 2015. "Decomposing changes in CO2 emission inequality over time: The roles of re-ranking and changes in per capita CO2 emission disparities," Energy Economics, Elsevier, vol. 49(C), pages 274-281.
    55. Du, Xiuying & Xie, Zixiong, 2020. "Occurrence of turning point on environmental Kuznets curve in the process of (de)industrialization," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 359-369.
    56. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    57. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
    58. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    59. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    60. Zhao, Jing & Sinha, Avik & Inuwa, Nasiru & Wang, Yihan & Murshed, Muntasir & Abbasi, Kashif Raza, 2022. "Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development," Renewable Energy, Elsevier, vol. 189(C), pages 853-864.
    61. Choi, Bongseok, 2020. "Productivity and misallocation of energy resources: Evidence from Korea’s manufacturing Sector," Resource and Energy Economics, Elsevier, vol. 61(C).
    62. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    63. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.
    64. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    65. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).

  10. Alcántara, Vicent & del Río, Pablo & Hernández, Félix, 2010. "Structural analysis of electricity consumption by productive sectors. The Spanish case," Energy, Elsevier, vol. 35(5), pages 2088-2098.

    Cited by:

    1. Llop Llop, Maria, 2018. "Decomposing the Changes in Water Intensity in a Mediterranean Region," Working Papers 2072/321558, Universitat Rovira i Virgili, Department of Economics.
    2. Yongke Yuan & Yixing Wang & Yuanying Chi & Feng Jin, 2020. "Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    3. Buenaño, Edwin & Padilla, Emilio & Alcántara, Vicent, 2021. "Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies," Energy Policy, Elsevier, vol. 158(C).
    4. Mat�as Piaggio & Vicent Alc�ntara & Emilio Padilla, 2014. "Greenhouse Gas Emissions And Economic Structure In Uruguay," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 155-176, June.
    5. Cansino, José M. & Román, Rocío & Colinet, María J., 2018. "Two smart energy management models for the Spanish electricity system," Utilities Policy, Elsevier, vol. 50(C), pages 60-72.
    6. Vicent Alcántara & Emilio Padilla, 2020. "Key sectors in greenhouse gas emissions in Spain: An alternative input–output analysis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 577-588, June.
    7. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    8. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
    9. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    10. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    11. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    12. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    13. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    14. Zhang, Moyi & Huang, Xian-Jin, 2012. "Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China," Energy, Elsevier, vol. 44(1), pages 515-526.
    15. Gaspari, Michele & Lorenzoni, Arturo & Frías, Pablo & Reneses, Javier, 2017. "Integrated Energy Services for the industrial sector: an innovative model for sustainable electricity supply," Utilities Policy, Elsevier, vol. 45(C), pages 118-127.
    16. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    17. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    18. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    19. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.
    20. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    21. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    22. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    23. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.

  11. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.

    Cited by:

    1. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla Rosa, 2014. "The causal factors of international inequality in CO2 emissions per capita: A regression-based inequality decomposition analysis," Working Papers wpdea1402, Department of Applied Economics at Universitat Autonoma of Barcelona.
    2. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    3. Di Cosmo, Valeria & Hyland, Marie & Llop Llop, Maria, 2014. "Disentangling water usage in the European Union: A decomposition analysis," Working Papers 2072/225298, Universitat Rovira i Virgili, Department of Economics.
    4. Buenaño, Edwin & Padilla, Emilio & Alcántara, Vicent, 2021. "Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies," Energy Policy, Elsevier, vol. 158(C).
    5. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    6. Maria Llop & Josep-Maria Arauzo-Carod, 2012. "Identifying the economic impact behind a cultural asset: an input–output subsystems analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(3), pages 861-877, December.
    7. Butnar, Isabela & Llop Llop, Maria, 2010. "Structural decomposition analysis and input-output subsystems: An application to Spanish CO2 emissions," Working Papers 2072/151546, Universitat Rovira i Virgili, Department of Economics.
    8. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    9. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    10. Faridah Djellal & Faïz Gallouj, 2018. "Services, Service Innovation and the Ecological Challenge," Post-Print hal-01672570, HAL.
    11. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    12. Joan Canton & Ariane Labat & Anton Roodhuijzen, 2010. "An indicator-based assessment framework to identify country-specific challenges towards greener grow," European Economy - Economic Papers 2008 - 2015 401, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    14. Muhammed Sehid Gorus & Erdal Tanas Karagol, 2023. "Factors affecting per capita ecological footprint in OECD countries: Evidence from machine learning techniquesa," Energy & Environment, , vol. 34(7), pages 2601-2618, November.
    15. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    16. Gustav Engström & Johan Gars & Niko Jaakkola & Therese Lindahl & Daniel Spiro & Arthur A. van Benthem, 2020. "What Policies Address Both the Coronavirus Crisis and the Climate Crisis?," CESifo Working Paper Series 8367, CESifo.
    17. Asif Raihan & Rawshan Ara Begum & Mohd Nizam Mohd Said & Joy Jacqueline Pereira, 2022. "Relationship between economic growth, renewable energy use, technological innovation, and carbon emission toward achieving Malaysia’s Paris agreement," Environment Systems and Decisions, Springer, vol. 42(4), pages 586-607, December.
    18. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    19. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    20. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2013. "The materiality of the immaterial. Services sectors and CO2 emissions in Uruguay," Working Papers wpdea1306, Department of Applied Economics at Universitat Autonoma of Barcelona.
    21. Llop, Maria & Tol, Richard S. J., 2011. "Decomposition of Sectoral Greenhouse Gas Emissions: A Subsystem Input-Output Model for the Republic of Ireland," Papers WP398, Economic and Social Research Institute (ESRI).
    22. Vicent Alcantara & Emilio Padilla & Matías Piaggio, 2016. "NOx emissions and productive structure in Spain: an input-output perspective," Working Papers wpdea1601, Department of Applied Economics at Universitat Autonoma of Barcelona.
    23. Céline Merlin-Brogniart & Simon Nadel, 2021. "Specificities of environmental innovation dynamics in service firms: the French case," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 451-473, April.
    24. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    25. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
    26. Yoann Verger, 2015. "Sraffa and ecological economics," Working Papers hal-01193070, HAL.
    27. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    28. Zhang, Lin, 2013. "Model projections and policy reviews for energy saving in China's service sector," Energy Policy, Elsevier, vol. 59(C), pages 312-320.
    29. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    30. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    31. Omri, Anis, 2017. "Entrepreneurship, Sectoral Outputs and Environmental Improvement : International Evidence," MPRA Paper 82440, University Library of Munich, Germany.
    32. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.
    33. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    34. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    35. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    36. Yoann Verger, 2015. "Sraffa and ecological economics: review of the literature," Working Papers hal-01182894, HAL.
    37. Cortés-Borda, D. & Ruiz-Hernández, A. & Guillén-Gosálbez, G. & Llop, M. & Guimerà, R. & Sales-Pardo, M., 2015. "Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach," Energy Policy, Elsevier, vol. 77(C), pages 21-30.
    38. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    39. Chen, G. & Chen, B. & Zhou, H. & Dai, P., 2013. "Life cycle carbon emission flow analysis for electricity supply system: A case study of China," Energy Policy, Elsevier, vol. 61(C), pages 1276-1284.
    40. Yoann Verger, 2018. "First steps for a Sraffian ecological economics. An answer to Martins' “The Classical Circular Economy, Sraffian Ecological Economics and the Capabilities Approach”," Working Papers hal-01700228, HAL.
    41. Fourcroy, Charlotte & Gallouj, Faiz & Decellas, Fabrice, 2012. "Energy consumption in service industries: Challenging the myth of non-materiality," Ecological Economics, Elsevier, vol. 81(C), pages 155-164.
    42. Md. Al Mamun & Kazi Sohag & Md. Abdul Hannan Mia & Gazi Salah Uddin & Ilhan Ozturk, 2014. "Regional Differences in the Dynamic Linkage between CO2 Emissions, Sectoral Output and Economic Growth," Working Papers 2014-141, Department of Research, Ipag Business School.
    43. Trappey, Amy J.C. & Trappey, Charles & Hsiao, C.T. & Ou, Jerry J.R. & Li, S.J. & Chen, Kevin W.P., 2012. "An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy," Energy Policy, Elsevier, vol. 45(C), pages 510-515.
    44. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    45. Cristian Mardones & Tamara Muñoz, 2018. "Environmental taxation for reducing greenhouse gases emissions in Chile: an input–output analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2545-2563, December.
    46. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    47. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    48. Marin, Giovanni & Mazzanti, Massimiliano & Montini, Anna, 2012. "Linking NAMEA and Input output for ‘consumption vs. production perspective’ analyses," Ecological Economics, Elsevier, vol. 74(C), pages 71-84.
    49. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
    50. Mamoudou Camara, 2022. "Tertiarization and the environment: does this relationship depend on the type of tertiarization?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 477-502, October.
    51. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    52. Manuel Alejandro Cardenete & Patricia Fuentes Saguar & Clemente Polo, 2013. "Linear General Equilibrium Model of Energy Demand and CO 2 Emissions Generated By the Andalusian Productive System," American Journal of Economics and Business Administration, Science Publications, vol. 4(4), pages 216-226, July.
    53. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.
    54. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    55. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    56. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.
    57. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    58. Hong Chen & Wenzhe Hu, 2020. "Determining Whether Trade Can Affect Regional Environmental Sustainability from the Perspective of Environmental Pollution," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    59. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    60. Grebel, Thomas & Stützer, Michael, 2014. "Assessment of the environmental performance of European countries over time: Addressing the role of carbon leakage and nuclear waste," Ilmenau Economics Discussion Papers 90, Ilmenau University of Technology, Institute of Economics.
    61. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    62. Piaggio, Matías & Alcántara, Vicent & Padilla, Emilio, 2015. "The materiality of the immaterial," Ecological Economics, Elsevier, vol. 110(C), pages 1-10.
    63. Loures, L. & Ferreira, P., 2019. "Energy consumption as a condition for per capita carbon dioxide emission growth: The results of a qualitative comparative analysis in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 220-225.
    64. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.

  12. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 4, pages 17-37.
    See citations under working paper version above.
  13. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.

    Cited by:

    1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    2. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    3. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2021. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Working Papers 2021-22, Faculty of Economics and Statistics, Universität Innsbruck.
    4. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    5. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    6. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    7. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    8. Butnar, Isabela & Llop Llop, Maria, 2010. "Structural decomposition analysis and input-output subsystems: An application to Spanish CO2 emissions," Working Papers 2072/151546, Universitat Rovira i Virgili, Department of Economics.
    9. Arkaitz Usubiaga‐Liaño & Paul Behrens & Vassilis Daioglou, 2020. "Energy use in the global food system," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 830-840, August.
    10. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    11. Nooraddin Sharify & Ramezan Hosseinzadeh, 2015. "Sources of Change in Energy Consumption in Iran: A Structural Decomposition Analysis," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(3), pages 325-339, Autumn.
    12. Wang, Chengwei & Miao, Wang & Lu, Miaomiao, 2022. "Evolution of the Chinese industrial structure: A social network perspective," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    14. Mu, Tao & Xia, Qing & Kang, Chongqing, 2010. "Input-output table of electricity demand and its application," Energy, Elsevier, vol. 35(1), pages 326-331.
    15. Löschel, Andreas & Rexhäuser, Sascha & Schymura, Michael, 2013. "Trade and the environment: An application of the WIOD database," ZEW Discussion Papers 13-005, ZEW - Leibniz Centre for European Economic Research.
    16. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
    17. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    18. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    19. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    20. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    21. Shahbaz, Muhammad & Sinha, Avik & Kontoleon, Andreas, 2020. "Decomposing Scale and Technique Effects of Economic Growth on Energy Consumption: Fresh Evidence in Developing Economies," MPRA Paper 102111, University Library of Munich, Germany, revised 27 Jul 2020.
    22. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    23. De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," ZEW Discussion Papers 13-052, ZEW - Leibniz Centre for European Economic Research.
    24. Shamshieva Nargizakhon Nosirkhodjaevna, 2016. "Best Practice of Benchmarking of Worlds Top Universities: Lessons for Higher Educational Institutions of Uzbekistan," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 2(12), pages 37-44, November.
    25. Yongbin Zhu & Yajuan Shi & Zheng Wang, 2015. "Industrial structure optimizing oriented by consuming preference pattern," EcoMod2015 8297, EcoMod.
    26. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    27. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    28. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
    29. Valeria Di Cosmo & Marie Hyland, 2015. "Decomposing patterns of emission intensity in the EU and China: how much does trade matter?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(12), pages 2176-2192, December.
    30. Alises, Ana & Vassallo, José Manuel, 2015. "Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an Input–Output structural decomposition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 141-157.
    31. Tarancón, Miguel Ángel & del Río, Pablo & Callejas, Fernando, 2011. "Determining the responsibility of manufacturing sectors regarding electricity consumption. The Spanish case," Energy, Elsevier, vol. 36(1), pages 46-52.
    32. Wolfgang Koller & Andreas Eder & Bernhard Mahlberg, 2023. "Industry-mix effects at different levels of sectoral disaggregation: a decomposition of inter-country differences in energy costs," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 883-897, November.
    33. Tolón-Becerra, A. & Lastra-Bravo, X. & Botta, G.F., 2010. "Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal," Energy Policy, Elsevier, vol. 38(11), pages 7093-7105, November.
    34. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    35. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
    36. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    37. Muhammad Shahbaz & Avik Sinha & Andreas Kontoleon, 2022. "Decomposing scale and technique effects of economic growth on energy consumption: Fresh evidence from developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1848-1869, April.
    38. Tarancon Moran, Miguel Angel & del Rio Gonzalez, Pablo, 2007. "A combined input-output and sensitivity analysis approach to analyse sector linkages and CO2 emissions," Energy Economics, Elsevier, vol. 29(3), pages 578-597, May.
    39. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    40. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    41. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    42. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    43. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    44. Jindao Chen & Yuhong Wang & Qian Shi & Xu Peng & Juhuan Zheng, 2021. "An international comparison analysis of CO2 emissions in the construction industry," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 754-767, July.
    45. Michel, Bernhard, 2013. "Does offshoring contribute to reducing domestic air emissions? Evidence from Belgian manufacturing," Ecological Economics, Elsevier, vol. 95(C), pages 73-82.
    46. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    47. Liangliang Liu & Wenqing Zhang, 2022. "Vertical fiscal imbalance and energy intensity in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 509-526, October.
    48. Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
    49. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    50. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
    51. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    52. Rodríguez-Huerta, Edgar & Rosas-Casals, Martí & Sorman, Alevgul H., 2017. "A societal metabolism approach to job creation and renewable energy transitions in Catalonia," Energy Policy, Elsevier, vol. 108(C), pages 551-564.
    53. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    54. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    55. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    56. Mariano González-Sánchez & Juan Luis Martín-Ortega, 2020. "Greenhouse Gas Emissions Growth in Europe: A Comparative Analysis of Determinants," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    57. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    58. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    59. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Zhang, Qiang & Zhao, Hongyan & Bi, Jun, 2015. "A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing," Energy, Elsevier, vol. 81(C), pages 294-303.
    60. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    61. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    62. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    63. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
    64. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

  14. Alcantara, Vicent & Duro, Juan Antonio, 2004. "Inequality of energy intensities across OECD countries: a note," Energy Policy, Elsevier, vol. 32(11), pages 1257-1260, July.

    Cited by:

    1. Duro Moreno, Juan Antonio & Teixidó Figueras, Jordi, 2013. "International Equity on Greenhouse Gas Emissions and World Levels: an integrated analysis through distributive welfare indices," Working Papers 2072/220758, Universitat Rovira i Virgili, Department of Economics.
    2. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla Rosa, 2014. "The causal factors of international inequality in CO2 emissions per capita: A regression-based inequality decomposition analysis," Working Papers wpdea1402, Department of Applied Economics at Universitat Autonoma of Barcelona.
    3. María-José Gutiérrez & Belén Inguanzo, 2019. "Contributing to Fisheries Sustainability: Inequality Analysis in the High Seas Catches of Countries," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    4. Nicola Cantore & Emilio Padilla, 2007. "Equity and CO2 Emissions Distribution in Climate Change Integrated Assessment," Working Papers wpdea0705, Department of Applied Economics at Universitat Autonoma of Barcelona.
    5. Emilio Padilla & Alfredo Serrano, 2005. "Inequality in CO2 emissions across countries and its relationship with income inequality: a distributive approach," Working Papers wpdea0503, Department of Applied Economics at Universitat Autonoma of Barcelona.
    6. Cantore, Nicola & Padilla, Emilio, 2007. "Equity and CO2 emissions distribution in climate change integrated assessment modelling," DEIAgra Working Papers 9350, Alma Mater Studiorum - University of Bologna, Department of Agricultural Economics and Agricultural Engineering.
    7. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    8. Sinha, Avik, 2017. "Inequality of renewable energy generation across OECD countries: A note," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 9-14.
    9. Duro, Juan Antonio, 2013. "Weighting vectors and international inequality changes in environmental indicators: An analysis of CO2 per capita emissions and Kaya factors," Energy Economics, Elsevier, vol. 39(C), pages 122-127.
    10. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    11. Kang, Jijun & Yu, Chenyang & Xue, Rui & Yang, Dong & Shan, Yuli, 2022. "Can regional integration narrow city-level energy efficiency gap in China?," Energy Policy, Elsevier, vol. 163(C).
    12. Remuzgo, Lorena & Trueba, Carmen & Sarabia, José María, 2016. "Evolution of the global inequality in greenhouse gases emissions using multidimensional generalized entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 146-157.
    13. Juan Antonio Duro Moreno & Emilio Padilla Rosa, "undated". "Análisis De Los Factores Determinantes De Las Desigualdades Internacionales En Las Emisiones De Co2 Per Cápita Aplicando El Enfoque Distributivo: Una Metodología De Descomposición Por Factores De Kaya," Working Papers 25-05 Classification-JEL , Instituto de Estudios Fiscales.
    14. Juan Antonio Duro Moreno & Emilio Padilla Rosa, 2007. "Análisis de la distribución de las emisiones de CO2 a nivel internacional mediante la adaptación del concepto y las medidas de polarización," Working Papers wpdea0706, Department of Applied Economics at Universitat Autonoma of Barcelona.
    15. Duro Moreno, Juan Antonio, 2010. "On the automatic application of inequality indexes in the analysis of the international distribution of environmental indicators," Working Papers 2072/151617, Universitat Rovira i Virgili, Department of Economics.
    16. Antonio Duro, Juan, 2010. "Decomposing international polarization of per capita CO2 emissions," Energy Policy, Elsevier, vol. 38(11), pages 6529-6533, November.
    17. Muhammad Salman Shabbir & Mohd Noor Mohd Shariff & Muzaffar Asad & Rabia Salman & Israr Ahmad, 2018. "Time-frequency Relationship between Innovation and Energy Demand in Pakistan: Evidence from Wavelet Coherence Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 251-258.
    18. Nicola Cantore & Emilio Padilla, 2009. "Emissions distribution in post–Kyoto international negotiations: a policy perspective," Working Papers wpdea0907, Department of Applied Economics at Universitat Autonoma of Barcelona.
    19. Bhattacharya, Joysankar & Sinha, Avik, 2016. "Inequality in Per Capita Water Availability: A Theil’s Second Measure Approach," MPRA Paper 100016, University Library of Munich, Germany.
    20. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    21. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    22. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    23. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    24. Qian Liu & Bo Li & Muhammad Mohiuddin, 2018. "Prediction and Decomposition of Efficiency Differences in Chinese Provincial Community Health Services," IJERPH, MDPI, vol. 15(10), pages 1-14, October.
    25. Bianco, Vincenzo & Cascetta, Furio & Marino, Alfonso & Nardini, Sergio, 2019. "Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues," Energy, Elsevier, vol. 170(C), pages 120-130.
    26. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    27. Satoshi Honma & Jin-Li Hu, 2011. "Industry-level Total-factor Energy Efficiency in Developed Countries," Discussion Papers 51, Kyushu Sangyo University, Faculty of Economics.
    28. Ezcurra, Roberto, 2007. "Distribution dynamics of energy intensities: A cross-country analysis," Energy Policy, Elsevier, vol. 35(10), pages 5254-5259, October.
    29. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
    30. Moises Neil V. Seriño, 2020. "Rising carbon footprint inequality in the Philippines," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 173-195, April.
    31. Emilio Padilla & Juan Antonio Duro, 2011. "Explanatory Factors Of Co2 Per Capita Emission Inequality In The European Union," Working Papers wpdea1107, Department of Applied Economics at Universitat Autonoma of Barcelona.
    32. Le Pen, Yannick & Sévi, Benoît, 2010. "What trends in energy efficiencies? Evidence from a robust test," Energy Economics, Elsevier, vol. 32(3), pages 702-708, May.
    33. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    34. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    35. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    36. Duro, Juan Antonio, 2015. "The international distribution of energy intensities: Some synthetic results," Energy Policy, Elsevier, vol. 83(C), pages 257-266.
    37. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    38. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    39. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    40. Duro, Juan Antonio & Padilla, Emilio, 2008. "Analysis of the international distribution of per capita CO2 emissions using the polarization concept," Energy Policy, Elsevier, vol. 36(1), pages 456-466, January.
    41. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    42. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    43. Tolón-Becerra, A. & Lastra-Bravo, X. & Botta, G.F., 2010. "Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal," Energy Policy, Elsevier, vol. 38(11), pages 7093-7105, November.
    44. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    45. Lixiao Zhang & Zhifeng Yang & Jing Liang & Yanpeng Cai, 2010. "Spatial Variation and Distribution of Urban Energy Consumptions from Cities in China," Energies, MDPI, vol. 4(1), pages 1-13, December.
    46. Avik, Sinha & Siddhartha K., Rastogi, 2015. "Inequality in Access to Improved Water Source: A Regional Analysis by Theil Index," MPRA Paper 101799, University Library of Munich, Germany, revised 2015.
    47. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    48. Jordi Teixidó-Figueras & Juan Duro, 2015. "International Ecological Footprint Inequality: A Methodological Review and Some Results," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 607-631, April.
    49. Chen, Haitao & Zhang, Bin & Wang, Zhaohua, 2022. "Hidden inequality in household electricity consumption: Measurement and determinants based on large-scale smart meter data," China Economic Review, Elsevier, vol. 71(C).
    50. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
    51. Duro, Juan Antonio & Padilla, Emilio, 2006. "International inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors," Energy Economics, Elsevier, vol. 28(2), pages 170-187, March.
    52. Moutinho, Victor & Varum, Celeste & Madaleno, Mara, 2017. "How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors," Energy Policy, Elsevier, vol. 106(C), pages 326-344.
    53. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    54. Chen, Chung-Chiang, 2011. "An analytical framework for energy policy evaluation," Renewable Energy, Elsevier, vol. 36(10), pages 2694-2702.
    55. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    56. Luigi Grossi & Mauro Mussini, 2017. "Inequality in Energy Intensity in the EU-28: Evidence from a New Decomposition Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    57. Krishna Malakar & Trupti Mishra & Anand Patwardhan, 2018. "Inequality in water supply in India: an assessment using the Gini and Theil indices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 841-864, April.
    58. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.
    59. Dhani Setyawan & Irwanda Wisnu Wardhana, 2020. "Energy Efficiency Development in Indonesia: An Empirical Analysis of Energy Intensity Inequality," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 68-77.
    60. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).

  15. Alcantara, Vicent & Padilla, Emilio, 2003. ""Key" sectors in final energy consumption: an input-output application to the Spanish case," Energy Policy, Elsevier, vol. 31(15), pages 1673-1678, December.

    Cited by:

    1. Climent, Francisco & Pardo, Angel, 2007. "Decoupling factors on the energy-output linkage: The Spanish case," Energy Policy, Elsevier, vol. 35(1), pages 522-528, January.
    2. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    3. Imori, Denise & Guilhoto, Joaquim José Martins, 2008. "How the CO2 emissions are related with the Brazilian productive structure," MPRA Paper 54040, University Library of Munich, Germany.
    4. Sonia García-Moreno & Víctor-Raúl López-Ruiz, 2023. "A Review of the Energy Sector as a Key Factor in Industry 4.0: The Case of Spain," Energies, MDPI, vol. 16(11), pages 1-17, May.
    5. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    6. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    7. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    8. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    9. Vicent Alcántara & Emilio Padilla, 2020. "Key sectors in greenhouse gas emissions in Spain: An alternative input–output analysis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 577-588, June.
    10. Arbex, Marcelo & Perobelli, Fernando S., 2010. "Solow meets Leontief: Economic growth and energy consumption," Energy Economics, Elsevier, vol. 32(1), pages 43-53, January.
    11. Emerson Martins Hilgemberg & Joaquim J. M. Guilhoto & Cleise M. A. T. Hilgemberg, 2005. "Uso De Combustíveis E Emissões De Co2 No Brasil: Um Modelo Inter-Regional De Insumo-Produto," Anais do XXXIII Encontro Nacional de Economia [Proceedings of the 33rd Brazilian Economics Meeting] 135, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Jordi Roca & Mònica Serrano, 2006. "Income growth and atmospheric pollution in Spain: an Input-Output approach," UHE Working papers 2006_04, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    13. Maria Daniele Jesus Teixeira & Jorge Madeira Nogueira & Denise Imbroisi & Alexandre Magno Melo Faria, 2020. "Strategic sectors for greenhouse gas mitigation investment: assessment based upon the Brazil’s input-output matrix," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 261-283, February.
    14. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    15. Chenyang Lian & Joost R. Santos & Yacov Y. Haimes, 2007. "Extreme Risk Analysis of Interdependent Economic and Infrastructure Sectors," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1053-1064, August.
    16. Suela, Attawan Guerino Locatel & Nazareth, Marcos Spínola & da Cunha, Dênis Antônio, 2021. "Environmental Effects of the Implementation of the ABC Plan in Matopiba: An Approach by Input-Output," 2021 Conference, August 17-31, 2021, Virtual 314998, International Association of Agricultural Economists.
    17. Franco, Marco Paulo Vianna & Souza, Carla Cristina Aguilar de & Carvalho, Terciane Sabadini & Leal Filho, Raimundo de Sousa & Morais, Reinaldo Carvalho de, 2020. "Carbon Emissions from Fuel Combustion in the Economy of the State of Minas Gerais, Brazil (2005-2016)," Revista Brasileira de Estudos Regionais e Urbanos, Associação Brasileira de Estudos Regionais e Urbanos (ABER), vol. 14(3), pages 469-491.
    18. Yingli Lou & Liyin Shen & Zhenhua Huang & Ya Wu & Heng Li & Guijun Li, 2018. "Does the Effort Meet the Challenge in Promoting Low-Carbon City?—A Perspective of Global Practice," IJERPH, MDPI, vol. 15(7), pages 1-21, June.
    19. Othman, Jamal & Jafari, Yaghoob, 2013. "Identification of the key sectors producing CO2 emissions in Malaysia: application of Input–Output analysis," MPRA Paper 65192, University Library of Munich, Germany, revised 19 Aug 2014.
    20. Tarancon Moran, Miguel Angel & del Rio Gonzalez, Pablo, 2007. "A combined input-output and sensitivity analysis approach to analyse sector linkages and CO2 emissions," Energy Economics, Elsevier, vol. 29(3), pages 578-597, May.
    21. Liyin Shen & Yingli Lou & Yali Huang & Jindao Chen, 2018. "A driving–driven perspective on the key carbon emission sectors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 349-371, August.
    22. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    23. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    24. Guerra, Ana-Isabel & Sancho, Ferran, 2018. "Positive and normative analysis of the output opportunity costs of GHG emissions reductions: A comparison of the six largest EU economies," Energy Policy, Elsevier, vol. 122(C), pages 45-62.
    25. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    26. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.
    27. Duarte, Rosa & Langarita, Raquel & Sánchez-Chóliz, Julio, 2017. "The electricity industry in Spain: A structural analysis using a disaggregated input-output model," Energy, Elsevier, vol. 141(C), pages 2640-2651.
    28. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.

  16. Roca, Jordi & Alcantara, Vicent, 2001. "Energy intensity, CO2 emissions and the environmental Kuznets curve. The Spanish case," Energy Policy, Elsevier, vol. 29(7), pages 553-556, June.

    Cited by:

    1. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    2. Muhammad, Shahbaz & Qazi Muhammad, Adnan Hye & Aviral Kumar, Tiwari, 2012. "Economic Growth, Energy Consumption, Financial Development, International Trade and CO2 Emissions in Indonesia," MPRA Paper 43294, University Library of Munich, Germany, revised 15 Dec 2012.
    3. Huang, Wei Ming & Lee, Grace W.M. & Wu, Chih Cheng, 2008. "GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis," Energy Policy, Elsevier, vol. 36(1), pages 239-247, January.
    4. Gangopadhyay, Partha & Shankar, Sriram, 2016. "Energy efficiency in the ACI (ASEAN-China-India) countries: is there room for regional policy coordination?," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 6(2), pages 121-135.
    5. Xavier Labandeira Villot & Pedro Linares, 2009. "Energy Efficiency: Economics and Policy," Economic Reports 06-09, FEDEA.
    6. Francisco Aguayo, 2010. "Stuck in the jam? CO2 emissions and energy intensity in Mexico," Serie documentos de trabajo del Centro de Estudios Económicos 2010-01, El Colegio de México, Centro de Estudios Económicos.
    7. Lakhadar Adouka & Habib Ben Bayer, 2021. "The Relationship between Environmental Quality and Economic Growth: An Empirical Investigation Applied to the Case of Algeria (1970-2019)," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 22-41.
    8. Georg Meran & Nadine Wittmann, 2012. "Green, Brown, and Now White Certificates: Are Three One Too Many? A Micro-Model of Market Interaction," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(4), pages 507-532, December.
    9. Dong Hee Suh, 2018. "An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    10. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    11. Sun, J. W., 2003. "The natural and social properties of CO2 emission intensity," Energy Policy, Elsevier, vol. 31(3), pages 203-209, February.
    12. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    13. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    14. Ranganathan, Shyam & Bali Swain, Ranjula, 2014. "Analysing Mechanisms for Meeting Global Emissions Target - A Dynamical Systems Approach," Working Paper Series 2014:10, Uppsala University, Department of Economics.
    15. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    16. Emilio Padilla Rosa & Jordi Roca Jusmet, 2003. "Las propuestas para un impuesto europeo sobre el CO2 y sus potenciales implicaciones distributivas entre países," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 2, pages 5-24.
    17. Muhammad, Shahbaz & Adebola Solarin, Solarin & Ozturk, Ilhan, 2016. "Environmental Kuznets curve hypothesis and the role of globalization in selected African countries," MPRA Paper 69859, University Library of Munich, Germany, revised 04 Mar 2016.
    18. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    19. Emilio Padilla Rosa & Jordi Roca Jusmet, 2002. "Las propuestas para un impuesto europeo sobre el CO2 y sus potenciales distributivas entre países," Working Papers wp0201cast, Department of Applied Economics at Universitat Autonoma of Barcelona.
    20. Emilio Padilla & Jordi Roca, 2004. "The Proposals for a European Tax on CO 2 and Their Implications for Intercountry Distribution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(3), pages 273-295, March.
    21. Hao, Yu & Wei, Yi-Ming, 2015. "When does the turning point in China's CO2 emissions occur? Results based on the Green Solow model," Environment and Development Economics, Cambridge University Press, vol. 20(6), pages 723-745, December.
    22. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    23. Meng, Lei & Guo, Ju'e & Chai, Jian & Zhang, Zengkai, 2011. "China's regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies," Energy Policy, Elsevier, vol. 39(10), pages 6136-6144, October.
    24. Diallo, Ibrahima Amadou, 2014. "The environmental Kuznets curve in a public spending model of economic growth," MPRA Paper 56528, University Library of Munich, Germany.
    25. Amin Yousefi-Sahzabi & Kyuro Sasaki & Hossein Yousefi & Yuichi Sugai, 2011. "CO 2 emission and economic growth of Iran," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 63-82, January.
    26. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    27. Emilio Padilla & Jordi Roca, 2002. "The proposals for a European tax on CO2 and their implications for intercountry," Working Papers wp0201, Department of Applied Economics at Universitat Autonoma of Barcelona.
    28. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    29. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    30. Xiuqin Zhang & Xudong Shi & Yasir Khan & Majid Khan & Saba Naz & Taimoor Hassan & Chenchen Wu & Tahir Rahman, 2023. "The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    31. Esteve, Vicente & Tamarit, Cecilio, 2012. "Is there an environmental Kuznets curve for Spain? Fresh evidence from old data," Economic Modelling, Elsevier, vol. 29(6), pages 2696-2703.
    32. Bongseok Choi & Wooyoung Park & Bok-Keun Yu, 2015. "Energy Efficiency and Firm Growth," Working Papers 2015-28, Economic Research Institute, Bank of Korea.
    33. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    34. Xuanting Li & Xiaohong Wang & Shaopeng Zhang, 2022. "Impacts of Urban Spatial Development Patterns on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 11(11), pages 1-16, November.
    35. Ang, B. W. & Choi, Ki-Hong, 2002. "Boundary problem in carbon emission decomposition," Energy Policy, Elsevier, vol. 30(13), pages 1201-1205, October.
    36. Song, Ma-Lin & Zhang, Wei & Wang, Shu-Hong, 2013. "Inflection point of environmental Kuznets curve in Mainland China," Energy Policy, Elsevier, vol. 57(C), pages 14-20.
    37. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    38. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Inmaculada Martínez-Zarzoso, 2016. "The determinants of CO2 emissions: evidence from European countries," Working Papers 2016/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    39. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2018. "N-shaped Environmental Kuznets Curve: A Note on Validation and Falsification," MPRA Paper 99313, University Library of Munich, Germany, revised 16 Mar 2020.
    40. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    41. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
    42. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    43. Mohsen Mehrara, 2011. "Pollution, Energy Consumption and Economic Growth: evidence from India, China and Brazil," Journal of Social and Development Sciences, AMH International, vol. 2(5), pages 233-242.
    44. Brown, Stephen P.A. & McDonough, Ian K., 2016. "Using the Environmental Kuznets Curve to evaluate energy policy: Some practical considerations," Energy Policy, Elsevier, vol. 98(C), pages 453-458.
    45. Ali Raza Cheema & Attiya Yasmin Javid, 2015. "The Relationship between Disaggregate Energy Consumption, Economic Growth and Environment for Asian Developing Economies," PIDE-Working Papers 2015:115, Pakistan Institute of Development Economics.
    46. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    47. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.
    48. Nadia Benali & Rochdi Feki, 2020. "Evaluation of the relationship between freight transport, energy consumption, economic growth and greenhouse gas emissions: the VECM approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1039-1049, February.

  17. Alcantara, Vicent & Roca, Jordi, 1999. "CO2 emissions and the occupation of the `environmental space'. An empirical exercise," Energy Policy, Elsevier, vol. 27(9), pages 505-508, September.

    Cited by:

    1. Emilio Padilla, 2002. "Limitations and biases of conventional analysis of climate change. Towards an analysis coherent with sustainable development," Working Papers wp0206, Department of Applied Economics at Universitat Autonoma of Barcelona.

  18. Alcantara, Vicent & Roca, Jordi, 1995. "Energy and CO2 emissions in Spain : Methodology of analysis and some results for 1980-1990," Energy Economics, Elsevier, vol. 17(3), pages 221-230, July.

    Cited by:

    1. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    2. Buenaño, Edwin & Padilla, Emilio & Alcántara, Vicent, 2021. "Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies," Energy Policy, Elsevier, vol. 158(C).
    3. Sonia García-Moreno & Víctor-Raúl López-Ruiz, 2023. "A Review of the Energy Sector as a Key Factor in Industry 4.0: The Case of Spain," Energies, MDPI, vol. 16(11), pages 1-17, May.
    4. Manresa, Antonio & Sancho, Ferran, 2005. "Implementing a double dividend: recycling ecotaxes towards lower labour taxes," Energy Policy, Elsevier, vol. 33(12), pages 1577-1585, August.
    5. Ferreira, João-Pedro & Barata, Eduardo & Ramos, Pedro Nogueira & Cruz, Luis, 2014. "Economic, social, energy and environmental assessment of inter-municipality commuting: The case of Portugal," Energy Policy, Elsevier, vol. 66(C), pages 411-418.
    6. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    7. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    8. Cansino, J.M. & Cardenete, M.A. & Ordóñez, M. & Román, R., 2012. "Economic analysis of greenhouse gas emissions in the Spanish economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6032-6039.
    9. Llop, Maria & Tol, Richard S. J., 2011. "Decomposition of Sectoral Greenhouse Gas Emissions: A Subsystem Input-Output Model for the Republic of Ireland," Papers WP398, Economic and Social Research Institute (ESRI).
    10. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    11. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    12. Esther Velázquez Alonso, 2003. "Modelo Input-Output de Agua. Análisis de las relaciones intersectoriales de agua en Andalucía," Economic Working Papers at Centro de Estudios Andaluces E2003/01, Centro de Estudios Andaluces.
    13. Junhwan Moon & Eungyeong Yun & Jaebeom Lee, 2020. "Identifying the Sustainable Industry by Input–Output Analysis Combined with CO 2 Emissions: A Time Series Study from 2005 to 2015 in South Korea," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    14. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    15. Jordi Roca & Mònica Serrano, 2006. "Income growth and atmospheric pollution in Spain: an Input-Output approach," UHE Working papers 2006_04, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    16. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "The energy and environmental impacts of Italian households consumptions: An input–output approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3897-3908.
    17. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    18. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    19. Carlos Santos-Iglesia & Pablo Fernández-Arias & Álvaro Antón-Sancho & Diego Vergara, 2022. "Energy Consumption of the Urban Transport Fleet in UNESCO World Heritage Sites: A Case Study of Ávila (Spain)," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    20. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    21. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    22. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    23. Butnar, Isabela & Llop Llop, Maria, 2006. "Composition of Greenhouse Gas Emissions in Spain: an Input-Output Analysis," Working Papers 2072/1750, Universitat Rovira i Virgili, Department of Economics.
    24. Esther Velazquez Alonso, 2003. "Analyzing Intersectorial Water Relationships by means of Graph Theory," ERSA conference papers ersa03p256, European Regional Science Association.
    25. Ang, B. W., 1999. "Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?," Energy Policy, Elsevier, vol. 27(15), pages 943-946, December.
    26. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    27. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    28. Alcantara, Vicent & Padilla, Emilio, 2003. ""Key" sectors in final energy consumption: an input-output application to the Spanish case," Energy Policy, Elsevier, vol. 31(15), pages 1673-1678, December.
    29. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    30. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    31. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    32. Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
    33. He, Hongming & Jim, C.Y., 2012. "Coupling model of energy consumption with changes in environmental utility," Energy Policy, Elsevier, vol. 43(C), pages 235-243.
    34. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    35. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    36. Llop Llop, Maria, 2005. "Ecological and Economic Impacts within the Environmental Input-Output Framework," Working Papers 2072/1755, Universitat Rovira i Virgili, Department of Economics.
    37. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    38. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.