IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v5y2017i1p10-d93706.html
   My bibliography  Save this article

The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †

Author

Listed:
  • Zeus Guevara

    (University Center of Tonalá, University of Guadalajara, Avenida Periférico 555, Ejido San José Tatepózco, Jalisco 48525, Mexico
    Institute of Economic Research, National Autonomous University of Mexico, Circuito Mario de la Cueva s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico)

  • Oscar Córdoba

    (Faculty of Economy, National Autonomous University of Mexico, Circuito Interior s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico)

  • Edith X. M. García

    (University Center of Tonalá, University of Guadalajara, Avenida Periférico 555, Ejido San José Tatepózco, Jalisco 48525, Mexico)

  • Rafael Bouchain

    (Institute of Economic Research, National Autonomous University of Mexico, Circuito Mario de la Cueva s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico)

Abstract

In 2014, the Mexican government approved a bold energy reform that allows private energy companies to freely participate in the energy market (something prohibited during the previous eight decades). This reform is expected to significantly restructure the energy sector and boost and diversify the energy production. Moreover, changes in the energy sector and production might lead to structural changes in the rest of the economy and ultimately generate significant economic benefits for the country. Nevertheless, the fundamental role of the energy sector in this oil producing country makes the potential impacts of the reform complex to forecast. The objective of the study is to analyze the current state, evolution, and driving factors of the total primary energy use in Mexico in 2003–2012 (prior to the implementation of the reform) as a precedent for future analyses of impacts of the energy reform. The results show three driving factors of the evolution of primary energy use: final non-energy demand, direct energy intensity, and economic structure. Also, it was found that the energy sector has been in a precarious situation regarding its structure and efficiency. However, this situation had a small effect on the evolution of primary energy use.

Suggested Citation

  • Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
  • Handle: RePEc:gam:jecomi:v:5:y:2017:i:1:p:10-:d:93706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/5/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/5/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lightfoot, H. Douglas, 2007. "Understand the three different scales for measuring primary energy and avoid errors," Energy, Elsevier, vol. 32(8), pages 1478-1483.
    2. Sheinbaum, Claudia & Rodriguez, Luis, 1997. "Recent trends in Mexican industrial energy use and their impact on carbon dioxide emissions," Energy Policy, Elsevier, vol. 25(7-9), pages 825-831.
    3. Randall Jackson & Alan Murray, 2004. "Alternative Input-Output Matrix Updating Formulations," Economic Systems Research, Taylor & Francis Journals, vol. 16(2), pages 135-148.
    4. Alcantara, Vicent & Roca, Jordi, 1995. "Energy and CO2 emissions in Spain : Methodology of analysis and some results for 1980-1990," Energy Economics, Elsevier, vol. 17(3), pages 221-230, July.
    5. Sheinbaum, Claudia & Ozawa, Leticia, 1998. "Energy use and CO2 emissions for Mexico's cement industry," Energy, Elsevier, vol. 23(9), pages 725-732.
    6. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    7. Sheinbaum, C. & Martínez, M. & Rodríguez, L., 1996. "Trends and prospects in Mexican residential energy use," Energy, Elsevier, vol. 21(6), pages 493-504.
    8. Erik Dietzenbacher & Alex R. Hoen, 1998. "Deflation Of Input‐Output Tables From The User'S Point Of View: A Heuristic Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 44(1), pages 111-122, March.
    9. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    10. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    11. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    12. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.
    13. Alvarez, Jorge & Valencia, Fabian, 2016. "Made in Mexico: Energy reform and manufacturing growth," Energy Economics, Elsevier, vol. 55(C), pages 253-265.
    14. Richard W. Fisher, 2014. "Ándale pues! having made the tough choices, Mexico stands to benefit from reforms and navigate Fed’s tapering with relative ease," Speeches and Essays 146, Federal Reserve Bank of Dallas.
    15. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    16. Sheinbaum, Claudia & Ruíz, Belizza J. & Ozawa, Leticia, 2011. "Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives," Energy, Elsevier, vol. 36(6), pages 3629-3638.
    17. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    18. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    19. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    20. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    21. Zeus Guevara & João F. D. Rodrigues, 2016. "Structural transitions and energy use: a decomposition analysis of Portugal 1995--2010," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 202-223, June.
    22. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    23. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    24. Aguayo, Francisco & Gallagher, Kevin P., 2005. "Economic reform, energy, and development: the case of Mexican manufacturing," Energy Policy, Elsevier, vol. 33(7), pages 829-837, May.
    25. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    26. Kathryn Kopinak, 2003. "Maquiladora industrialization of the Baja California peninsula: the coexistence of thick and thin globalization with economic regionalism," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 27(2), pages 319-336, June.
    27. Casler, Stephen & Wilbur, Suzanne, 1984. "Energy input-output analysis : A simple guide," Resources and Energy, Elsevier, vol. 6(2), pages 187-201, June.
    28. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    29. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    30. Erik Dietzenbacher & Umed Temurshoev, 2012. "Input-output impact analysis in current or constant prices: does it matter?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-18, December.
    31. Dietzenbacher, Erik & Hoen, Alex R, 1998. "Deflation of Input-Output Tables from the User's Point of View: A Heuristic Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 44(1), pages 111-122, March.
    32. Berndt, Ernst R. & Botero, German, 1985. "Energy demand in the transportation sector of Mexico," Journal of Development Economics, Elsevier, vol. 17(3), pages 219-238, April.
    33. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    34. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulises Flores Hernández & Dirk Jaeger & Jorge Islas Samperio, 2018. "Evaluating Economic Alternatives for Wood Energy Supply Based on Stochastic Simulation," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    2. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    3. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    5. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    6. Guevara, Zeus & Sebastian, Antonio & Carranza Dumon, Fabian, 2022. "Economy-wide impact of conventional development policies in oil-exporting developing countries: The case of Mexico," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    2. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    3. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    4. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    5. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    6. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    7. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    8. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    9. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    10. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    11. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    12. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    13. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    14. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    15. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    16. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    17. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    18. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    19. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    20. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:5:y:2017:i:1:p:10-:d:93706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.