IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v21y1996i6p493-504.html
   My bibliography  Save this article

Trends and prospects in Mexican residential energy use

Author

Listed:
  • Sheinbaum, C.
  • Martínez, M.
  • Rodríguez, L.

Abstract

Trends of residential energy use in Mexico are described between 1970 and 1990. Top-down and bottom-up approaches are specified. The top-down approach shows that household energy demand has been non-elastic to energy price and that changes in household size were more important than income in determining per capita energy demand between 1970 and 1990. The bottom-up approach shows that cooking is the main end use while water heating and appliances are the end uses with the greatest rates of growth. Nearly 20% energy savings may be achievable in the future.

Suggested Citation

  • Sheinbaum, C. & Martínez, M. & Rodríguez, L., 1996. "Trends and prospects in Mexican residential energy use," Energy, Elsevier, vol. 21(6), pages 493-504.
  • Handle: RePEc:eee:energy:v:21:y:1996:i:6:p:493-504
    DOI: 10.1016/0360-5442(96)00011-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544296000114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(96)00011-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, Amulya K. N., 1991. "Barriers to improvements in energy efficiency," Energy Policy, Elsevier, vol. 19(10), pages 953-961, December.
    2. Sathaye, J. & Friedmann, R. & Meyers, S. & de Buen, O. & Gadgil, A. & Vargas, E. & Saucedo, R., 1994. "Economic analysis of Ilumex a project to promote energy-efficient residential lighting in Mexico," Energy Policy, Elsevier, vol. 22(2), pages 163-171, February.
    3. van der Plas, Robert, 1988. "Domestic lighting," Policy Research Working Paper Series 68, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingchao, Zhang & Kotani, Koji, 2012. "The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective?," Energy Economics, Elsevier, vol. 34(2), pages 381-388.
    2. Rosas-Flores, Jorge Alberto & Morillón Gálvez, David & Fernández Zayas, José Luís, 2010. "Inequality in the distribution of expense allocated to the main energy fuels for Mexican households: 1968-2006," Energy Economics, Elsevier, vol. 32(5), pages 960-966, September.
    3. C. Sheinbaum & I. Jauregui & L. Rodríguez V., 1997. "Carbon dioxide emission reduction scenarios in Mexico for year 2005: Industrial cogeneration and efficient lighting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(4), pages 359-372, December.
    4. W.J. Wouter Botzen & Tim Nees & Francisco Estrada, 2020. "Temperature Effects on Electricity and Gas Consumption: Empirical Evidence from Mexico and Projections under Future Climate Conditions," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    5. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    6. José M. Labeaga & Xavier Labandeira & Xiral López-Otero, 2018. "Energy Tax Reform and Poverty Alleviation in Mexico," Working Papers 1801, Universidade de Vigo, Departamento de Economía Aplicada.
    7. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    8. Zhang, Rui & Wei, Taoyuan & Glomsrød, Solveig & Shi, Qinghua, 2014. "Bioenergy consumption in rural China: Evidence from a survey in three provinces," Energy Policy, Elsevier, vol. 75(C), pages 136-145.
    9. C. Sheinbaum & I. Jauregui & L. Rodríguez V., 1998. "Carbon Dioxide Emission Reduction Scenarios in Mexico for Year 2005: Industrial Cogeneration and Efficient Lighting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(4), pages 359-372, December.
    10. Zhang, Rui & Wei, Taoyuan & Sun, Jie & Shi, Qinghua, 2016. "Wave transition in household energy use," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 297-308.
    11. Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019. "Review of key international demand elasticities for major industrializing economies," Energy Policy, Elsevier, vol. 133(C).
    12. Egelioglu, F. & Mohamad, A.A. & Guven, H., 2001. "Economic variables and electricity consumption in Northern Cyprus," Energy, Elsevier, vol. 26(4), pages 355-362.
    13. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    14. Rosas-Flores, Jorge Alberto & Gálvez, David Morillón, 2010. "What goes up: Recent trends in Mexican residential energy use," Energy, Elsevier, vol. 35(6), pages 2596-2602.
    15. Thomas M. Fullerton & Ericka C. M ndez-Carrillo & Adam G. Walke, 2014. "Electricity Demand in a Northern Mexico Metropolitan Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 495-505.
    16. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).
    17. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Bailey, J.A. & Gordon, R. & Burton, D. & Yiridoe, E.K., 2008. "Factors which influence Nova Scotia farmers in implementing energy efficiency and renewable energy measures," Energy, Elsevier, vol. 33(9), pages 1369-1377.
    3. Risholt, Birgit & Berker, Thomas, 2013. "Success for energy efficient renovation of dwellings—Learning from private homeowners," Energy Policy, Elsevier, vol. 61(C), pages 1022-1030.
    4. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. C. Sheinbaum & I. Jauregui & L. Rodríguez V., 1998. "Carbon Dioxide Emission Reduction Scenarios in Mexico for Year 2005: Industrial Cogeneration and Efficient Lighting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(4), pages 359-372, December.
    6. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    7. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    8. Reddy, B. Sudhakara, 2003. "Overcoming the energy efficiency gap in India's household sector," Energy Policy, Elsevier, vol. 31(11), pages 1117-1127, September.
    9. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    10. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    11. Von Hippel, David F. & Hayes, Peter & Williams, James H. & Greacen, Chris & Sagrillo, Mick & Savage, Timothy, 2008. "International energy assistance needs and options for the Democratic People's Republic of Korea (DPRK)," Energy Policy, Elsevier, vol. 36(2), pages 541-552, February.
    12. Balachandra, P. & Kristle Nathan, Hippu Salk & Reddy, B. Sudhakara, 2010. "Commercialization of sustainable energy technologies," Renewable Energy, Elsevier, vol. 35(8), pages 1842-1851.
    13. Macdonald, Douglas, 2012. "State interest as an explanatory factor in the failure of the soft-path energy vision," Energy Policy, Elsevier, vol. 43(C), pages 92-101.
    14. B. Sudhakara Reddy & Gaudenz Assenza, 2007. "Barriers and Drivers to Energy Efficiency - A new Taxonomical Approach," Development Economics Working Papers 22348, East Asian Bureau of Economic Research.
    15. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    16. Worrell, Ernst & van Berkel, Rene & Fengqi, Zhou & Menke, Christoph & Schaeffer, Roberto & O. Williams, Robert, 2001. "Technology transfer of energy efficient technologies in industry: a review of trends and policy issues," Energy Policy, Elsevier, vol. 29(1), pages 29-43, January.
    17. C. Sheinbaum & I. Jauregui & L. Rodríguez V., 1997. "Carbon dioxide emission reduction scenarios in Mexico for year 2005: Industrial cogeneration and efficient lighting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(4), pages 359-372, December.
    18. Valentová, Michaela & Lízal, Lubomír & Knápek, Jaroslav, 2018. "Designing energy efficiency subsidy programmes: The factors of transaction costs," Energy Policy, Elsevier, vol. 120(C), pages 382-391.
    19. Ibitoye, F. I. & Akinbami, J-F. K., 1999. "Strategies for implementation of CO2-mitigation options in Nigeria's energy sector," Applied Energy, Elsevier, vol. 63(1), pages 1-16, May.
    20. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:21:y:1996:i:6:p:493-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.