IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i8p1842-1851.html
   My bibliography  Save this article

Commercialization of sustainable energy technologies

Author

Listed:
  • Balachandra, P.
  • Kristle Nathan, Hippu Salk
  • Reddy, B. Sudhakara

Abstract

Commercialization efforts to diffuse sustainable energy technologies (SETs11The SETs can be viewed as a portfolio of technologies, which are expected to use renewable energy resources as input to produce modern energy carriers.) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the ‘potential adopters’ to ‘techno-entrepreneurs’, the study presents the mechanisms for adopting a private sector driven ‘business model’ approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization.

Suggested Citation

  • Balachandra, P. & Kristle Nathan, Hippu Salk & Reddy, B. Sudhakara, 2010. "Commercialization of sustainable energy technologies," Renewable Energy, Elsevier, vol. 35(8), pages 1842-1851.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1842-1851
    DOI: 10.1016/j.renene.2009.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Henrik Klinge Jacobsen, 2000. "Technology Diffusion in Energy-Economy Models: The Case of Danish Vintage Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 43-71.
    2. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    3. Dieperink, Carel & Brand, Iemy & Vermeulen, Walter, 2004. "Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework," Energy Policy, Elsevier, vol. 32(6), pages 773-784, April.
    4. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    5. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    6. Reddy, Amulya K. N., 1991. "Barriers to improvements in energy efficiency," Energy Policy, Elsevier, vol. 19(10), pages 953-961, December.
    7. Ramesh Bhatia, 1988. "Energy Pricing and Household Energy Consumption in India," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 71-106.
    8. de Almeida, Edmar Luiz Fagundes, 1998. "Energy efficiency and the limits of market forces: The example of the electric motor market in France," Energy Policy, Elsevier, vol. 26(8), pages 643-653, July.
    9. Menanteau, P., 2003. "Can negotiated agreements replace efficiency standards as an instrument for transforming the electrical appliance market?," Energy Policy, Elsevier, vol. 31(9), pages 827-835, July.
    10. Alam, Manzoor & Sathaye, Jayant & Barnes, Doug, 1998. "Urban household energy use in India: efficiency and policy implications," Energy Policy, Elsevier, vol. 26(11), pages 885-891, September.
    11. Menanteau, Philippe & Lefebvre, Herve, 2000. "Competing technologies and the diffusion of innovations: the emergence of energy-efficient lamps in the residential sector," Research Policy, Elsevier, vol. 29(3), pages 375-389, March.
    12. Cristina Tébar Less & Steven McMillan, 2005. "Achieving the Successful Transfer of Environmentally Sound Technologies: Trade-related Aspects," OECD Trade and Environment Working Papers 2005/2, OECD Publishing.
    13. Gangopadhyay, Shubhashis & Ramaswami, Bharat & Wadhwa, Wilima, 2005. "Reducing subsidies on household fuels in India: how will it affect the poor?," Energy Policy, Elsevier, vol. 33(18), pages 2326-2336, December.
    14. B. Sudhakara Reddy & P. Balachandra & Hippu Salk Kristle Nathan, 2008. "An Entrepreneurship model for energy empowerment of Indian households: An Eonomic and policy analysis," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-024, Indira Gandhi Institute of Development Research, Mumbai, India.
    15. Peter, Raja & Ramaseshan, B & Nayar, C.V, 2002. "Conceptual model for marketing solar based technology to developing countries," Renewable Energy, Elsevier, vol. 25(4), pages 511-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivia Coldrey & Paul Lant & Peta Ashworth, 2023. "Elucidating Finance Gaps through the Clean Cooking Value Chain," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    3. Carlo Drago & Andrea Gatto, 2022. "An interval‐valued composite indicator for energy efficiency and green entrepreneurship," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2107-2126, July.
    4. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    5. Linus Lawrenz & Bobby Xiong & Luise Lorenz & Alexandra Krumm & Hans Hosenfeld & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei & Christian Von Hirschhausen, 2018. "Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis," Energies, MDPI, vol. 11(11), pages 1-23, November.
    6. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    7. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    8. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H. & Ashok, Veilumuthu, 2013. "A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur distric," Energy, Elsevier, vol. 52(C), pages 77-88.
    9. Abdul, Daud & Wenqi, Jiang & Sameeroddin, Mohd, 2023. "Prioritization of ecopreneurship barriers overcoming renewable energy technologies promotion: A comparative analysis of novel spherical fuzzy and Pythagorean fuzzy AHP approach," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    10. Jaroslav HAVLÍČEK & Martin PELIKÁN & Tomáš ŠUBRT, 2012. "New businesses for small and medium entrepreneurs (SMEs) in the Renewable Energy Sources (RES)," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(9), pages 425-432.
    11. Hokey Min, 2023. "Exploring the Commercialization of Smart Rural Energy in Times of Energy Supply Chain Disruptions," Energies, MDPI, vol. 16(14), pages 1-14, July.
    12. Faran Ahmed & Muhammad Naeem & Muhammad Iqbal, 2017. "ICT and renewable energy: a way forward to the next generation telecom base stations," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 43-56, January.
    13. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    14. Tobias Schmidt & Sandeep Dabur, 2014. "Explaining the diffusion of biogas in India: a new functional approach considering national borders and technology transfer," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(2), pages 171-199, April.
    15. Gabriel, Cle-Anne, 2016. "What is challenging renewable energy entrepreneurs in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 362-371.
    16. Shakeel, Shah Rukh & Takala, Josu & Zhu, Lian-Dong, 2017. "Commercialization of renewable energy technologies: A ladder building approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 855-867.
    17. Rolando-Arturo Cubillos-González & Grace Tiberio Cardoso, 2020. "Clean Technology Transfer and Innovation in Social Housing Production in Brazil and Colombia. A Framework from a Systematic Review," Sustainability, MDPI, vol. 12(4), pages 1-12, February.
    18. Lund, Peter D., 2014. "How fast can businesses in the new energy sector grow? An analysis of critical factors," Renewable Energy, Elsevier, vol. 66(C), pages 33-40.
    19. Mijung Jung & Yi-beck Lee & Heesang Lee, 2015. "Classifying and prioritizing the success and failure factors of technology commercialization of public R&D in South Korea: using classification tree analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 877-898, October.
    20. Balachandra, P., 2011. "Modern energy access to all in rural India: An integrated implementation strategy," Energy Policy, Elsevier, vol. 39(12), pages 7803-7814.
    21. Charikleia Karakosta, 2016. "A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change," Energies, MDPI, vol. 9(7), pages 1-20, June.
    22. Chih-Jou Chen & Chia-Chin Chang & Shiu-Wan Hung, 2011. "Influences of Technological Attributes and Environmental Factors on Technology Commercialization," Journal of Business Ethics, Springer, vol. 104(4), pages 525-535, December.
    23. Gabriel, Cle-Anne & Kirkwood, Jodyanne, 2016. "Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries," Energy Policy, Elsevier, vol. 95(C), pages 336-349.
    24. Kang, Moon Jung & Hwang, Jongwoon, 2016. "Structural dynamics of innovation networks funded by the European Union in the context of systemic innovation of the renewable energy sector," Energy Policy, Elsevier, vol. 96(C), pages 471-490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    2. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    3. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Carlo Drago & Andrea Gatto, 2022. "An interval‐valued composite indicator for energy efficiency and green entrepreneurship," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2107-2126, July.
    5. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    6. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    7. Kangas, Hanna-Liisa & Lazarevic, David & Kivimaa, Paula, 2018. "Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies," Energy Policy, Elsevier, vol. 114(C), pages 63-76.
    8. B. Sudhakara Reddy & Gaudenz Assenza, 2007. "Barriers and Drivers to Energy Efficiency - A new Taxonomical Approach," Development Economics Working Papers 22348, East Asian Bureau of Economic Research.
    9. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    10. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Sola, Antonio Vanderley Herrero & Xavier, Antonio Augusto de Paula, 2007. "Organizational human factors as barriers to energy efficiency in electrical motors systems in industry," Energy Policy, Elsevier, vol. 35(11), pages 5784-5794, November.
    12. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    13. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    14. O'Malley, Eoin & Scott, Susan & Sorrell, Steve, 2003. "Barriers to Energy Efficiency: Evidence from Selected Sectors," Research Series, Economic and Social Research Institute (ESRI), number PRS47, June.
    15. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    16. Cooke, R. & Cripps, A. & Irwin, A. & Kolokotroni, M., 2007. "Alternative energy technologies in buildings: Stakeholder perceptions," Renewable Energy, Elsevier, vol. 32(14), pages 2320-2333.
    17. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    18. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    19. Wuttipan Kiatruangkrai & Ekachai Leelarasmee, 2016. "Barriers to Energy Saving for Public Middle Schools in Bangkok: From School Management Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 513-521.
    20. Balachandra, P., 2011. "Modern energy access to all in rural India: An integrated implementation strategy," Energy Policy, Elsevier, vol. 39(12), pages 7803-7814.

    More about this item

    Keywords

    Sustainability; Technology; Commercialization; Renewable energy; Energy efficiency; Entrepreneurship;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1842-1851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.