IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v6y2017i1d10.1186_s40008-017-0068-9.html
   My bibliography  Save this article

An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco

Author

Listed:
  • Abdeslam Boudhar

    (Sultan Moulay Slimane University)

  • Said Boudhar

    (Cadi Ayyad University)

  • Aomar Ibourk

    (Cadi Ayyad University)

Abstract

Over the last few decades, Morocco has been undergoing a strong and fast water demand increase due to demographic upsurge, irrigated agriculture expansion, flourishing foreign trade and changing standard of living and lifestyles. The continued increase of water demand has imposed a height pressure over national scare water resources. Despite this worrying situation, the imperative of sustainable water use and management has created a need for compulsory information to define and implement economic and water-saving policies in an integrated and informed manner. This paper uses an input–output model of water use to analyse the relationships between economic sectors and water resources use in Morocco (i.e. direct water use) as well as the intersectoral water relationships (i.e. indirect water use). The results show that, on the one hand, Agriculture, hunting and forestry sector exhibits high direct water use. On the other hand, secondary and tertiary sectors display low direct use and high indirect water use. Typical examples of sectors with high indirect water use are manufacture of food and tobacco products and hotels and restaurants sectors. Further by means of the impact analysis, we have demonstrated that the economic sectors whose indirect water use coefficients are high have a significant influence on water resources by means of their “drag effect” on water use of other sectors. The results highlight the added value of conducting an analysis of the intersectoral water relationships and suggest that it is important to take into account in the processes of policy definition not only the direct water use but also the indirect water use, because neglecting them could threaten our water resources.

Suggested Citation

  • Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
  • Handle: RePEc:spr:jecstr:v:6:y:2017:i:1:d:10.1186_s40008-017-0068-9
    DOI: 10.1186/s40008-017-0068-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-017-0068-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-017-0068-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Llop, Maria, 2013. "Water reallocation in the input–output model," Ecological Economics, Elsevier, vol. 86(C), pages 21-27.
    2. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    3. Llop, Maria, 2008. "Economic impact of alternative water policy scenarios in the Spanish production system: An input-output analysis," Ecological Economics, Elsevier, vol. 68(1-2), pages 288-294, December.
    4. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    5. Casler, Stephen D. & Rafiqui, Aisha, 1993. "Evaluating Fuel Tax Equity: Direct and Indirect Distributional Effects," National Tax Journal, National Tax Association;National Tax Journal, vol. 46(2), pages 197-205, June.
    6. Oliveira, Carla & Antunes, Carlos Henggeler, 2004. "A multiple objective model to deal with economy-energy-environment interactions," European Journal of Operational Research, Elsevier, vol. 153(2), pages 370-385, March.
    7. Labandeira, Xavier & Labeaga, Jose M., 2002. "Estimation and control of Spanish energy-related CO2 emissions: an input-output approach," Energy Policy, Elsevier, vol. 30(7), pages 597-611, June.
    8. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    9. Chang, Yih F & Lin, Sue J, 1998. "Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach," Energy Policy, Elsevier, vol. 26(1), pages 5-12, January.
    10. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    11. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    12. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    13. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    14. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    15. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    16. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    17. Gay, Philip W. & Proops, John L.R., 1993. "Carbon---dioxide production by the UK economy: An input-output assessment," Applied Energy, Elsevier, vol. 44(2), pages 113-130.
    18. Randall, Alan, 1981. "Property Entitlements And Pricing Policies For A Maturing Water Economy," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 25(3), pages 1-26, December.
    19. Charles W. Howe & Jeffrey K. Lazo & Kenneth R. Weber, 1990. "The Economic Impacts of Agriculture-to-Urban Water Transfers on the Area of Origin: A Case Study of the Arkansas River Valley in Colorado," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(5), pages 1200-1204.
    20. Xavier Labandeira & José M. Labeaga, 1999. "Combining input-output analysis and micro-simulation to assess the effects of carbon taxation on Spanish households," Fiscal Studies, Institute for Fiscal Studies, vol. 20(3), pages 305-320, September.
    21. Alan Randall, 1981. "Property Entitlements And Pricing Policies For A Maturing Water Economy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 25(3), pages 195-220, December.
    22. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.
    23. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    24. Bithas, Kostas, 2008. "The sustainable residential water use: Sustainability, efficiency and social equity. The European experience," Ecological Economics, Elsevier, vol. 68(1-2), pages 221-229, December.
    25. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    26. Casler, Stephen D. & Rafiqui, Aisha, 1993. "Evaluating Fuel Tax Equity: Direct and Indirect Distributional Effects," National Tax Journal, National Tax Association, vol. 46(2), pages 197-205, June.
    27. C. Oliveira & D. Coelho & C. H. Antunes, 2016. "Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review," Annals of Operations Research, Springer, vol. 247(2), pages 471-502, December.
    28. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    29. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    30. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    31. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo A. Haddad & Fatima Ezzahra Mengoub & Vinicius A. Vale, 2020. "Water content in trade: a regional analysis for Morocco," Economic Systems Research, Taylor & Francis Journals, vol. 32(4), pages 565-584, October.
    2. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Abdeslam Boudhar & Said Boudhar & Mohamed Oudgou & Aomar Ibourk, 2023. "Assessment of Virtual Water Flows in Morocco’s Foreign Trade of Crop Products," Resources, MDPI, vol. 12(4), pages 1-23, April.
    4. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    2. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    3. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    4. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    5. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    6. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    7. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    8. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    9. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    10. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    11. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    12. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    13. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    14. Compeán, Roberto Guerrero & Polenske, Karen R., 2011. "Antagonistic bioenergies: Technological divergence of the ethanol industry in Brazil," Energy Policy, Elsevier, vol. 39(11), pages 6951-6961.
    15. Labandeira, Xavier & Labeaga, Jose M., 2002. "Estimation and control of Spanish energy-related CO2 emissions: an input-output approach," Energy Policy, Elsevier, vol. 30(7), pages 597-611, June.
    16. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    17. Minihan, Erin S. & Wu, Ziping, 2012. "Economic structure and strategies for greenhouse gas mitigation," Energy Economics, Elsevier, vol. 34(1), pages 350-357.
    18. Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
    19. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    20. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:6:y:2017:i:1:d:10.1186_s40008-017-0068-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.