IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i8p3194-3204.html
   My bibliography  Save this article

Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis

Author

Listed:
  • Liu, Hong-Tao
  • Guo, Ju-E
  • Qian, Dong
  • Xi, You-Min

Abstract

Households consume a large amount of indirect energy through the consumption of goods and services. This fact makes the quantitative analysis of indirect household energy consumption the foundation of energy policy design. This paper improves the compilation method of energy input-output tables, and establishes a sequence of energy input-output tables for China. Based on these tables, the indirect energy consumption of both rural and urban households is calculated. Then, with economic data for the year of 2005, the adjusted input-output price model is applied to evaluate how the alternative energy policies impact production prices, consumption prices, and real income of rural and urban households through the mechanism of indirect energy consumption by using electricity as an example. This research has practical implications for Chinese economy. The integration of energy-efficiency improvements and energy prices increase serves as a means to achieve both economic and energy conservation goals, and may also have a positive effect on residents' real income and a minimal effect on production prices.

Suggested Citation

  • Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3194-3204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00265-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    2. Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
    3. Nguyen, Khanh Q., 2008. "Impacts of a rise in electricity tariff on prices of other products in Vietnam," Energy Policy, Elsevier, vol. 36(8), pages 3135-3139, August.
    4. Wu, Rong-Hwa & Chen, Chia-Yon, 1990. "On the application of input-output analysis to energy issues," Energy Economics, Elsevier, vol. 12(1), pages 71-76, January.
    5. Labandeira, Xavier & Labeaga, Jose M., 2002. "Estimation and control of Spanish energy-related CO2 emissions: an input-output approach," Energy Policy, Elsevier, vol. 30(7), pages 597-611, June.
    6. Lehr, Ulrike & Nitsch, Joachim & Kratzat, Marlene & Lutz, Christian & Edler, Dietmar, 2008. "Renewable energy and employment in Germany," Energy Policy, Elsevier, vol. 36(1), pages 108-117, January.
    7. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    8. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    9. Han, Sang-Yong & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2004. "The role of the four electric power sectors in the Korean national economy: an input-output analysis," Energy Policy, Elsevier, vol. 32(13), pages 1531-1543, September.
    10. Nishimura, Kazuhiko & Hondo, Hiroki & Uchiyama, Yohji, 1996. "Derivation of energy-embodiment functions to estimate the embodied energy from the material content," Energy, Elsevier, vol. 21(12), pages 1247-1256.
    11. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    12. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    13. Hawdon, David, 2003. "Efficiency, performance and regulation of the international gas industry--a bootstrap DEA approach," Energy Policy, Elsevier, vol. 31(11), pages 1167-1178, September.
    14. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    15. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    16. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    17. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    18. Rose, A. & Chen, C. Y., 1991. "Sources of change in energy use in the U.S. economy, 1972-1982 : A structural decomposition analysis," Resources and Energy, Elsevier, vol. 13(1), pages 1-21, April.
    19. Chang, Yih F. & Lewis, Charles & Lin, Sue J., 2008. "Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2471-2480, July.
    20. Polenske, Karen R. & McMichael, Francis C., 2002. "A Chinese cokemaking process-flow model for energy and environmental analyses," Energy Policy, Elsevier, vol. 30(10), pages 865-883, August.
    21. Murthy, N. S. & Panda, Manoj & Parikh, Jyoti, 1997. "Economic development, poverty reduction and carbon emissions in India," Energy Economics, Elsevier, vol. 19(3), pages 327-354, July.
    22. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.
    23. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    24. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.
    25. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    26. Xiaoli Han & TK. Lakshmanan, 1994. "Structural Changes and Energy Consumption in the Japanese Economy 1975-95: An Input-Output Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 165-188.
    27. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    28. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    29. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    30. J. W. Sun, 1999. "Decomposition of Aggregate CO2 Emissions in the OECD: 1960-1995," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 147-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    2. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    3. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    4. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
    5. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    6. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    7. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    8. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2012. "Estimation of sectoral energy and energy-related CO2 emission intensities in Iran: An energy IO approach," IDEC DP2 Series 2-15, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    9. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    10. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    11. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    12. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    13. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    14. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    15. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    16. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    17. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    18. Wu, Kaiyao & Shi, Jiyuan & Yang, Tinggan, 2017. "Has energy efficiency performance improved in China?—non-energy sectors evidence from sequenced hybrid energy use tables," Energy Economics, Elsevier, vol. 67(C), pages 169-181.
    19. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    20. repec:eco:journ2:2017-04-31 is not listed on IDEAS
    21. Cansino, J.M. & Cardenete, M.A. & Ordóñez, M. & Román, R., 2012. "Economic analysis of greenhouse gas emissions in the Spanish economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6032-6039.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3194-3204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.