IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i6d10.1007_s10668-017-0004-z.html
   My bibliography  Save this article

Environmental taxation for reducing greenhouse gases emissions in Chile: an input–output analysis

Author

Listed:
  • Cristian Mardones

    (University of Concepción)

  • Tamara Muñoz

    (University of Concepción)

Abstract

This study uses an environmental extension of the Leontief price model to analyse various tax rates on the carbon dioxide (CO2) and other greenhouse gases (GHGs) emissions that are generated by the most polluting sectors of the Chilean economy. By using this methodology, it is possible to obtain a counterfactual scenario for the prices, levels of production and emissions of each economic sector, as well as, for tax collection, consumer spending and the consumer price index. This analysis is important because Chile is internationally committed to reducing its emissions by 30% by 2030. According to the results, to meet the target CO2 emissions only using tax policies, tax should be approximately 20 times higher than their current levels in the electricity sector. Alternatively, a lower tax of US $30/ton of CO2 and other GHGs applied to all sectors of the economy could reduce CO2 and other GHGs emissions by up to 25.7% with less of a negative impact on the economy.

Suggested Citation

  • Cristian Mardones & Tamara Muñoz, 2018. "Environmental taxation for reducing greenhouse gases emissions in Chile: an input–output analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2545-2563, December.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:6:d:10.1007_s10668-017-0004-z
    DOI: 10.1007/s10668-017-0004-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-0004-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-0004-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sébastien Dessus & David O'Connor, 2003. "Climate Policy without Tears CGE-Based Ancillary Benefits Estimates for Chile," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 287-317, July.
    2. World Bank & Ecofys & Vivid Economics, "undated". "State and Trends of Carbon Pricing 2016," World Bank Publications - Reports 25160, The World Bank Group.
    3. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    4. Llop, Maria, 2008. "Economic impact of alternative water policy scenarios in the Spanish production system: An input-output analysis," Ecological Economics, Elsevier, vol. 68(1-2), pages 288-294, December.
    5. Choi, Jun-Ki & Bakshi, Bhavik R. & Hubacek, Klaus & Nader, Jordan, 2016. "A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies," Applied Energy, Elsevier, vol. 184(C), pages 830-839.
    6. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    7. Eskinder Demisse Gemechu & Isabela Butnar & Maria Llop & Francesc Castells, 2014. "Economic and environmental effects of CO 2 taxation: an input-output analysis for Spain," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(5), pages 751-768, May.
    8. Alvaro Gallardo & Cristian Mardones, 2013. "Environmentally extended social accounting matrix for Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(4), pages 1099-1127, August.
    9. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2014. "Transition to clean capital, irreversible investment and stranded assets," Policy Research Working Paper Series 6859, The World Bank.
    10. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    11. Ferreira, João-Pedro & Barata, Eduardo & Ramos, Pedro Nogueira & Cruz, Luis, 2014. "Economic, social, energy and environmental assessment of inter-municipality commuting: The case of Portugal," Energy Policy, Elsevier, vol. 66(C), pages 411-418.
    12. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    13. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    14. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    15. World Bank & IFC & MIGA, 2016. "World Bank Group Climate Change Action Plan 2016-2020," World Bank Publications - Books, The World Bank Group, number 24451, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Peng & Zhiyuan Jin & Lujun Xiao, 2022. "Evaluating low-carbon competitiveness under a DPSIR-Game Theory-TOPSIS model—A case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5962-5990, April.
    2. Mardones, Cristian & Mena, Camilo, 2020. "Effects of the internalization of the social cost of global and local air pollutants in Chile," Energy Policy, Elsevier, vol. 147(C).
    3. Mardones, Cristian & Velásquez, Andrés, 2021. "Macroeconomic, intersectoral, and environmental effects of R&D subsidies in Chile: An input-output approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Li, Zhengda & Zheng, Chengxin & Liu, Aimin & Yang, Yang & Yuan, Xiaoling, 2022. "Environmental taxes, green subsidies, and cleaner production willingness: Evidence from China's publicly traded companies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Yu Sun & Feng Lian & Zhong-Zhen Yang, 2022. "Optimizing the location of physical shopping centers under the clicks-and-mortar retail mode," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2288-2314, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mardones, Cristian & Baeza, Nicolas, 2018. "Economic and environmental effects of a CO2 tax in Latin American countries," Energy Policy, Elsevier, vol. 114(C), pages 262-273.
    2. Cristian Mardones P. & Tamara Muñoz Z., 2017. "Impuesto al CO2 en el sector eléctrico chileno: efectividad y efectos macroeconómicos," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(1), pages 004-025, April.
    3. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    4. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    5. Llop, Maria, 2020. "Energy import costs in a flexible input-output price model," Resource and Energy Economics, Elsevier, vol. 59(C).
    6. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
    7. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    8. Mardones, Cristian & Mena, Camilo, 2020. "Effects of the internalization of the social cost of global and local air pollutants in Chile," Energy Policy, Elsevier, vol. 147(C).
    9. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    10. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    11. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    12. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    13. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.
    14. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    15. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    16. Choi, Jun-Ki & Eom, Jiyong & McClory, Emma, 2018. "Economic and environmental impacts of local utility-delivered industrial energy-efficiency rebate programs," Energy Policy, Elsevier, vol. 123(C), pages 289-298.
    17. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2012. "A general equilibrium analysis of the inflationary impact of energy subsidies reform in Iran," IDEC DP2 Series 2-8, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    18. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    19. Ferran Sancho, 2021. "The mitigation potential of eco-taxation on carbon emissions: income effects under downward rigid wages," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 93-107, January.
    20. Chen, G. & Chen, B. & Zhou, H. & Dai, P., 2013. "Life cycle carbon emission flow analysis for electricity supply system: A case study of China," Energy Policy, Elsevier, vol. 61(C), pages 1276-1284.

    More about this item

    Keywords

    Leontief price model; Environmental taxes; CO2; GHGs;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:6:d:10.1007_s10668-017-0004-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.