IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i2d10.1007_s11069-018-3400-2.html
   My bibliography  Save this article

Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry

Author

Listed:
  • Qiang Du

    (Chang’ an Univ)

  • Min Wu

    (Chang’ an Univ)

  • Yadan Xu

    (Chang’ an Univ)

  • Xinran Lu

    (Chang’ an Univ)

  • Libiao Bai

    (Chang’ an Univ)

  • Ming Yu

    (Chang’ an Univ)

Abstract

Climate change caused by carbon emissions continuously threatens sustainable development. Due to China’s immense territory, there are remarkable regional differences in carbon emissions. The construction industry, which has strong internal industrial differences, further leads to carbon emission disparity in China. Policymakers should consider spatial effects and attempt to eliminate carbon emission inequality to promote the sustainable development of the construction industry and realize emission reduction targets. Based on the classic Markov chain and spatial Markov chain, this paper investigates the club convergence and spatial distribution dynamics of China’s carbon intensity in the construction industry from 2005 to 2014. The results show that the provincial carbon intensity in the construction industry is characterized by “convergence clubs” during the research period, and very low-level and very high-level convergence clubs have strong stability. Moreover, the carbon intensity class transitions of provinces tend to be consistent with that of their neighbors. Furthermore, the transition of carbon intensity types is highly influenced by their regional backgrounds. The provinces with high carbon emissions have a negative influence on their neighbors, whereas the provinces with low carbon emissions have a positive influence. These analyses provide a spatial interpretation to the “club convergence” of carbon intensity.

Suggested Citation

  • Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:2:d:10.1007_s11069-018-3400-2
    DOI: 10.1007/s11069-018-3400-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3400-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3400-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wesley Burnett, J. & Madariaga, Jessica, 2017. "The convergence of U.S. state-level energy intensity," Energy Economics, Elsevier, vol. 62(C), pages 357-370.
    2. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    3. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    4. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    5. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    6. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.
    7. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    8. Fingleton, Bernard, 1997. "Specification and Testing of Markov Chain Models: An Application to Convergence in the European Union," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(3), pages 385-403, August.
    9. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2015. "Convergence of carbon dioxide performance across Swedish industrial sectors: An environmental index approach," Energy Economics, Elsevier, vol. 51(C), pages 227-235.
    10. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    11. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    12. Romero-Ávila, Diego, 2008. "Convergence in carbon dioxide emissions among industrialised countries revisited," Energy Economics, Elsevier, vol. 30(5), pages 2265-2282, September.
    13. Li, Xuehui & Lin, Boqiang, 2013. "Global convergence in per capita CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 357-363.
    14. Herrerias, M.J., 2013. "The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy," Energy Policy, Elsevier, vol. 61(C), pages 1140-1150.
    15. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    16. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    17. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    18. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    19. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    20. Maza, Adolfo & Hierro, María & Villaverde, José, 2012. "Income distribution dynamics across European regions: Re-examining the role of space," Economic Modelling, Elsevier, vol. 29(6), pages 2632-2640.
    21. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    22. Frederic Carluer, 2005. "Dynamics of Russian regional clubs: The time of divergence," Regional Studies, Taylor & Francis Journals, vol. 39(6), pages 713-726.
    23. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Hu & Shanggang Yin & Haibo Gong, 2022. "Spatial–Temporal Evolution Patterns and Influencing Factors of China’s Urban Housing Price-to-Income Ratio," Land, MDPI, vol. 11(12), pages 1-15, December.
    2. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    2. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    3. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    4. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    5. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    6. Cialani, Catia & Mortazavi, Reza, 2021. "Sectoral analysis of club convergence in EU countries’ CO2 emissions," Energy, Elsevier, vol. 235(C).
    7. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    8. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    9. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
    10. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    11. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    12. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    13. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    14. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    15. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
    16. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    17. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
    18. Caiquan Bai & Yuehua Mao & Yuan Gong & Chen Feng, 2019. "Club Convergence and Factors of Per Capita Transportation Carbon Emissions in China," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    19. Acar, Sevil & Yeldan, A. Erinç, 2018. "Investigating patterns of carbon convergence in an uneven economy: The case of Turkey," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 96-106.
    20. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:2:d:10.1007_s11069-018-3400-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.