IDEAS home Printed from https://ideas.repec.org/p/bar/bedcje/2011267.html
   My bibliography  Save this paper

Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005

Author

Listed:
  • Paola Rocchi
  • Monica Serrano

    (Universitat de Barcelona)

Abstract

This study analyses the evolution of greenhouse gas (GHG) emissions and acidification emissions for Italy in the years 1995-2005. Looking at data, while emissions that contribute to the local problem of acidification have been decreasing quite constantly, GHG emissions have been showing a slight increase due to the rise of carbon dioxide. The aim is therefore to highlight how different economic factors have driven the evolution of Italian emissions. The main factors considered are economic growth, the development of a technology allowing a more environment-friendly way of production, and the structure of consumption. The methodology proposed is a structural decomposition analysis (SDA), a method that permits to decompose the changes of the variable of interest among different driving forces and to reveal the relevance of each factor. Moreover, the analysis considers the relevance of international trade and it tries to deal with the problem of responsibility. That is, through international trade relationships a country could be exporting polluting production processes without a real reduction of the pollution implied in its consumption pattern. For this purpose, the SDA is firstly applied to the emissions caused by domestic production. This corresponds to a production-based approach (PBA). Successively, the analysis moves toward a consumption-based approach (CBA) and the decomposition is applied to emissions related to domestic production or foreign production that satisfies domestic demand. In this way the exercise allows a first check of the importance of international trade and it highlights some results at global as well at sector level that can indicate in which direction further analysis should be carried on.

Suggested Citation

  • Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
  • Handle: RePEc:bar:bedcje:2011267
    as

    Download full text from publisher

    File URL: http://www.ere.ub.es/dtreball/E11267.rdf/at_download/file
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serrano, Mònica & Dietzenbacher, Erik, 2010. "Responsibility and trade emission balances: An evaluation of approaches," Ecological Economics, Elsevier, vol. 69(11), pages 2224-2232, September.
    2. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    3. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    4. Wu, Jung-Hua & Chen, Yen-Yin & Huang, Yun-Hsun, 2007. "Trade pattern change impact on industrial CO2 emissions in Taiwan," Energy Policy, Elsevier, vol. 35(11), pages 5436-5446, November.
    5. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    6. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    7. Lim, Hea-Jin & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2009. "Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis," Energy Policy, Elsevier, vol. 37(2), pages 686-698, February.
    8. Chen, Chia-Yon & Wu, Rong-Hwa, 1994. "Sources of change in industrial electricity use in the Taiwan economy, 1976-1986," Energy Economics, Elsevier, vol. 16(2), pages 115-120, April.
    9. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    10. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    11. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    12. Mazzanti, Massimiliano & Montini, Anna, 2009. "Regional and Sector Environmental Efficiency Empirical Evidence from Structural Shift-share Analysis of NAMEA data," Sustainable Development Papers 50360, Fondazione Eni Enrico Mattei (FEEM).
    13. Henrik Jacobsen, 2000. "Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 319-343.
    14. Viviani, Carlo, 2010. "The Italian Position in the Energy and Climate Change Negotiations," MPRA Paper 28679, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    2. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    3. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    4. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    5. repec:eco:journ2:2017-04-31 is not listed on IDEAS
    6. Youguo Zhang, 2012. "Scale, Technique and Composition Effects in Trade-Related Carbon Emissions in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 371-389, March.
    7. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    8. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    9. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    10. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    11. Michel, Bernhard, 2013. "Does offshoring contribute to reducing domestic air emissions? Evidence from Belgian manufacturing," Ecological Economics, Elsevier, vol. 95(C), pages 73-82.
    12. Marques, Alexandra & Rodrigues, João & Domingos, Tiago, 2013. "International trade and the geographical separation between income and enabled carbon emissions," Ecological Economics, Elsevier, vol. 89(C), pages 162-169.
    13. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    14. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    15. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    16. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
    17. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    18. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
    19. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    20. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    21. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.

    More about this item

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:2011267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Espai de Recerca en Economia (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.