IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v39y2019i1d10.1007_s10669-018-9699-0.html
   My bibliography  Save this article

An input–output linear programming model for assessing climate policy considering economic growth

Author

Listed:
  • Hoa Thi Nguyen

    (Osaka University)

  • Naoya Kojima

    (Osaka University)

  • Akihiro Tokai

    (Osaka University)

Abstract

Deploying new strategies to reduce the effect of climate change may constrain economic growth. It is thus necessary to develop a model which evaluates the trade-off between economic and environmental influences prior to a policy implementation. Recent studies have proved the effectiveness of input–output linear programming model in identifying the optimal solutions when different climate policies are considered. However, analyzing sectoral linkage to give priority sectors and then finding optimal solutions through reducing pollution from these sectors, which help avoid the economic losses from low-polluting sectors, have not been figured out in previous works. This study first uses input–output an (IO) analysis to provide a measure of structural interdependence among economic sectors and present priority sectors. An IO optimization model is then developed for minimizing the total greenhouse gas (GHG) emissions, in order to identify strategies for GHG intensity reduction in Vietnam, focusing on the priority sectors. In addition, the effect of GHG emissions on human health using the disability adjusted life years (DALY) is further evaluated. Six scenarios are considered to identify the potentials of highest GHG intensity reduction that can be obtained by the year 2020. These scenarios encompass BAU, the consideration of different GDP growth rates, differentiated economic sector growth, economic restructure, and the adaptation of lower-pollution technology implementation for the priority sectors. Each scenario quantifies sectoral final demand, sectoral gross domestic output, sectoral GHG emissions, GHG intensity, and DALY. The linkage analysis results indicate that agriculture, fishery and forestry, transport and communication, personal, community and household, manufacturing of non-metallic mineral products, and mining and quarrying are priority sectors. The optimization solutions present that the best strategy is by taking advantages of identified measures. The best solution obtains 20.3% reduction in GHG intensity compared to baseline. These obtained results become the useful suggestions for decision makers and environmental management in designing successful environmental regulations.

Suggested Citation

  • Hoa Thi Nguyen & Naoya Kojima & Akihiro Tokai, 2019. "An input–output linear programming model for assessing climate policy considering economic growth," Environment Systems and Decisions, Springer, vol. 39(1), pages 34-48, March.
  • Handle: RePEc:spr:envsyd:v:39:y:2019:i:1:d:10.1007_s10669-018-9699-0
    DOI: 10.1007/s10669-018-9699-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-018-9699-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-018-9699-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.
    2. Nguyen-Huu, Thanh Tam & Nguyen-Khac, Minh, 2017. "Impacts of Export-platform FDI on the production of upstream industries - do third country size, trade agreements and local content requirement matter? Evidence from the Vietnamese supporting industri," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-33.
    3. Hsu, George J. Y. & Chou, Feng-Ying, 2000. "Integrated planning for mitigating CO2 emissions in Taiwan: a multi-objective programming approach," Energy Policy, Elsevier, vol. 28(8), pages 519-523, July.
    4. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    5. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    6. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    7. Erik Dietzenbacher, 2005. "More on multipliers," Journal of Regional Science, Wiley Blackwell, vol. 45(2), pages 421-426, May.
    8. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    2. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    3. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    4. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    5. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    6. Alp, Esra & Kök, Recep & Başkol, Murat Ozan, 2017. "Türkiye Ekonomisinde Sürükleyici Endüstri Analizi:2002-2012 Karşılaştırması [Key Sector Analysis in Turkish Economy: A Compare Between 2002-2012]," MPRA Paper 89952, University Library of Munich, Germany.
    7. Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
    8. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    9. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    10. Lenzen, Manfred & Murray, Joy & Sack, Fabian & Wiedmann, Thomas, 2007. "Shared producer and consumer responsibility -- Theory and practice," Ecological Economics, Elsevier, vol. 61(1), pages 27-42, February.
    11. Mattila, Tuomas & Koskela, Sirkka & Seppälä, Jyri & Mäenpää, Ilmo, 2013. "Sensitivity analysis of environmentally extended input–output models as a tool for building scenarios of sustainable development," Ecological Economics, Elsevier, vol. 86(C), pages 148-155.
    12. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    13. Oosterhaven, Jan, 2017. "Key Sector Analysis," Research Report 17015-GEM, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    15. Guerra, Ana-Isabel & Sancho, Ferran, 2018. "Positive and normative analysis of the output opportunity costs of GHG emissions reductions: A comparison of the six largest EU economies," Energy Policy, Elsevier, vol. 122(C), pages 45-62.
    16. Lenzen, Manfred, 2007. "Structural path analysis of ecosystem networks," Ecological Modelling, Elsevier, vol. 200(3), pages 334-342.
    17. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    18. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    19. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    20. Cortés-Borda, D. & Ruiz-Hernández, A. & Guillén-Gosálbez, G. & Llop, M. & Guimerà, R. & Sales-Pardo, M., 2015. "Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach," Energy Policy, Elsevier, vol. 77(C), pages 21-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:39:y:2019:i:1:d:10.1007_s10669-018-9699-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.