IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v51y2007i1p141-174.html
   My bibliography  Save this article

Measuring spatial repercussion effects of regional waste management

Author

Listed:
  • Kagawa, Shigemi
  • Nakamura, Shinichiro
  • Inamura, Hajime
  • Yamada, Masato

Abstract

The present paper proposes an analytical framework for measuring the spatial pollution repercussion effects of regional waste management. The empirical analysis using the 1995 nine-region waste input–output table reveals that as the regional population size become larger, the intraregional waste treatment level directly and indirectly induced by a person's consumption behaviour tends to be large due to economies of scale. In contrast, we especially find that the indirect household contributions per capita of the Chugoku and Shikoku region were, conversely, about 1.4 times larger than that of the Kanto region, because of the differences in the regional commodity consumption patterns. In comparing the actual economic system in 1995 with the hypothetical complete intraregional waste treatment system, we also find that the latter system increased total waste landfill by 18,103tonnes, which amounts to 0.03% of the total waste landfill, revealing the location advantage of intermediate inputs for waste treatment activities and regional technological differences.

Suggested Citation

  • Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
  • Handle: RePEc:eee:recore:v:51:y:2007:i:1:p:141-174
    DOI: 10.1016/j.resconrec.2006.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344906001856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2006.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchin, Faye, 1990. "The conversion of biological materials and wastes to useful products," Structural Change and Economic Dynamics, Elsevier, vol. 1(2), pages 243-261, December.
    2. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    3. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    4. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    5. Oosterhaven, Jan, 1984. "A family of square and rectangular interregional input-output tables and models," Regional Science and Urban Economics, Elsevier, vol. 14(4), pages 565-582, November.
    6. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    7. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    8. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    9. Mette Wier & Manfred Lenzen & Jesper Munksgaard & Sinne Smed, 2001. "Effects of Household Consumption Patterns on CO2 Requirements," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 259-274.
    10. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    11. Shigemi Kagawa, 2005. "Inter-industry analysis, consumption structure, and the household waste production structure," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 409-423.
    12. Walter Isard & Kenneth Bassett & Charles Choguill & John Furtado & Ronald Izumita & John Kissin & Eliahu Romanoff & Richard Seyfarth & Richard Tatlock, 1968. "On The Linkage Of Socio‐Economic And Ecologic Systems," Papers in Regional Science, Wiley Blackwell, vol. 21(1), pages 79-99, January.
    13. Shigemi Kagawa & Hajime Inamura, 2004. "A Spatial Structural Decomposition Analysis of Chinese and Japanese Energy Demand: 1985-1990," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 279-299.
    14. Christoph Weber & Hermann Schnabl, 1998. "Environmentally Important Inter sectoral Flows: Insights from Main Contributions Identification and Minimal Flow Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 337-356.
    15. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    16. Steenge, Albert E, 1978. "Environmental Repercussions and the Economic Structure: Further Comments," The Review of Economics and Statistics, MIT Press, vol. 60(3), pages 482-486, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edgar Battand Towa Kouokam & Vanessa Zeller & Stefano Merciai & Wouter Achten, 2021. "Regional waste footprint and waste treatments analysis," ULB Institutional Repository 2013/332189, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzanti, Massimiliano & Montini, Anna, 2010. "Embedding the drivers of emission efficiency at regional level -- Analyses of NAMEA data," Ecological Economics, Elsevier, vol. 69(12), pages 2457-2467, October.
    2. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    3. Manfred Lenzen, 2001. "A Generalized Input-Output Multiplier Calculus for Australia," Economic Systems Research, Taylor & Francis Journals, vol. 13(1), pages 65-92.
    4. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    5. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    6. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    7. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    8. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
    9. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    10. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    11. repec:eco:journ2:2017-04-31 is not listed on IDEAS
    12. Hasegawa Ryoji & Hirofumi Nakayama & Takayuki Shimoaka, 2017. "Analyzing material flow and value added associated with non-metallic mineral wastes in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-15, December.
    13. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    14. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
    15. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    16. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    17. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    18. Shigemi Kagawa & Yuki Kudoh & Keisuke Nansai & Tomohiro Tasaki, 2008. "The Economic and Environmental Consequences of Automobile Lifetime Extension and Fuel Economy Improvement: Japan's Case," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 3-28.
    19. Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
    20. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
    21. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:51:y:2007:i:1:p:141-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.