IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination"

by Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 201230, University of Pretoria, Department of Economics.
  2. Sigl-Grüb, C. & Schiereck, D., 2010. "Speculation and Nonlinear Price Dynamics in Commodity Futures Markets," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56603, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  3. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
  4. Cheng, Che-Hui & Wu, Po-Chin, 2013. "Nonlinear earnings persistence," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 156-168.
  5. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
  6. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
  7. Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
  8. Giancarlo Bruno, 2008. "Forecasting Using Functional Coefficients Autoregressive Models," ISAE Working Papers 98, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
  9. Teddy, S.D. & Ng, S.K., 2011. "Forecasting ATM cash demands using a local learning model of cerebellar associative memory network," International Journal of Forecasting, Elsevier, vol. 27(3), pages 760-776, July.
  10. Ubilava, David & Helmers, C Gustav, 2012. "Forecasting ENSO with a smooth transition autoregressive model," MPRA Paper 36890, University Library of Munich, Germany.
  11. Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper Series 49_07, The Rimini Centre for Economic Analysis.
  12. Vijverberg, Chu-Ping C., 2009. "A time deformation model and its time-varying autocorrelation: An application to US unemployment data," International Journal of Forecasting, Elsevier, vol. 25(1), pages 128-145.
  13. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
  14. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working papers 2010-21, University of Connecticut, Department of Economics.
  15. Peter Exterkate, 2012. "Model Selection in Kernel Ridge Regression," CREATES Research Papers 2012-10, Department of Economics and Business Economics, Aarhus University.
  16. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
  17. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
  18. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2009. "Non-linear predictability in stock and bond returns: when and where is it exploitable?," Working Papers 2008-010, Federal Reserve Bank of St. Louis.
  19. Joseph V. Balagtas & Matthew T. Holt, 2009. "The Commodity Terms of Trade, Unit Roots, and Nonlinear Alternatives: A Smooth Transition Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 87-105.
  20. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
  21. Nektarios Aslanidis & Charlotte Christiansen, 2010. "Smooth Transition Patterns in the Realized Stock Bond Correlation," CREATES Research Papers 2010-15, Department of Economics and Business Economics, Aarhus University.
  22. Medeiros, Marcelo C. & McAleer, Michael & Slottje, Daniel & Ramos, Vicente & Rey-Maquieira, Javier, 2008. "An alternative approach to estimating demand: Neural network regression with conditional volatility for high frequency air passenger arrivals," Journal of Econometrics, Elsevier, vol. 147(2), pages 372-383, December.
  23. Costas Milas & Ilias Lekkos & Theodore Panagiotidis, 2006. "Forecasting interest rate swap spreads using domestic and international risk factors: Evidence from linear and non-linear models," Keele Economics Research Papers KERP 2006/05, Centre for Economic Research, Keele University.
  24. Balagtas, Joseph Valdes & Holt, Matthew T., 2006. "Unit Roots, TV-STARs, and the Commodity Terms of Trade: A Further Assessment of the Prebisch-Singer Hypothesis," 2006 Annual meeting, July 23-26, Long Beach, CA 21405, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  25. Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
  26. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
  27. Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
  28. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
  29. Francq, Christian & Horvath, Lajos & Zakoian, Jean-Michel, 2008. "Sup-tests for linearity in a general nonlinear AR(1) model when the supremum is taken over the full parameter space," MPRA Paper 16669, University Library of Munich, Germany.
  30. Kim, Sei-Wan & Mollick, André V. & Nam, Kiseok, 2008. "Common nonlinearities in long-horizon stock returns: Evidence from the G-7 stock markets," Global Finance Journal, Elsevier, vol. 19(1), pages 19-31.
  31. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
  32. Collan, Mikael, 2004. "Giga-Investments: Modelling the Valuation of Very Large Industrial Real Investments," MPRA Paper 4328, University Library of Munich, Germany.
  33. Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
  34. Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
  35. Ralf Becker & Denise R. Osborn, 2012. "Weighted Smooth Transition Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 795-811, 08.
  36. Peter Exterkate, 2011. "Modelling Issues in Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-138/4, Tinbergen Institute.
  37. Giancarlo Bruno, 2014. "Consumer confidence and consumption forecast: a non-parametric approach," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(1), pages 37-52, February.
  38. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
  39. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
  40. Nikolay Robinzonov & Klaus Wohlrabe, 2008. "Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models," Ifo Working Paper Series Ifo Working Paper No. 57, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  41. Yoon, Gawon, 2010. "Do real exchange rates really follow threshold autoregressive or exponential smooth transition autoregressive models?," Economic Modelling, Elsevier, vol. 27(2), pages 605-612, March.
  42. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
  43. Federico Lampis, 2016. "Forecasting the sectoral GVA of a small Spanish region," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 38-44.
  44. BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.