IDEAS home Printed from https://ideas.repec.org/a/dug/actaec/y2013i2p153-165.html
   My bibliography  Save this article

How to Improve the SPF Forecasts?

Author

Listed:
  • Mihaela Bratu (Simionescu)

    (Academy of Economic Studies, Bucharest, Romania)

Abstract

Many researchers are interested in making predictions for macroeconomic variables, but few of them studied the accuracy of their forecasts. The problem is essential, especially in crisis periods, because from many forecasts made for the same indicator only one or few are the most accurate. In this research, some alternative forecasts for the annual rate of change for the HICP for EU were developed. Their accuracy was evaluated and compared with the accuracy of SPF predictions. All the proposed predictions for January 2010-May 2012 (those based on a random walk developed for 1997-2009, combined forecasts, the median and the mean of forecasts, predictions based on different econometric models that take into account the previous SPF forecasts) were not more accurate than the naïve forecasts or SPF ones. A considerably improvement of the accuracy was gotten for predictions based on mean error of SPF expectations for 1997-2009 and the previous registered value. This empirical strategy of building more accurate forecasts was better than the classical theoretical approaches from literature, but it is still less accurate than the naïve forecasts that could be made for UE inflation rate. So, the forecasts based on a simple econometric model as the random walk from the naïve approach are the most accurate, conclusion that is in accordance with the latest researches in literature and with one of the essential condition in forecasting theory.

Suggested Citation

  • Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
  • Handle: RePEc:dug:actaec:y:2013:i:2:p:153-165
    as

    Download full text from publisher

    File URL: http://journals.univ-danubius.ro/index.php/oeconomica/article/view/1597
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465.
    2. Clements, Michael P & Hendry, David F, 1995. "Forecasting in Cointegration Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 127-146, April-Jun.
    3. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    4. Dobrescu, Emilian, 2003. "Macroeconomic Estimations For The Romanian “Pre-Accession Economic Program” (The 2003 Version)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 23-49, December.
    5. Heilemann, Ullrich & Stekler, Herman, 2007. "Introduction to "The future of macroeconomic forecasting"," International Journal of Forecasting, Elsevier, vol. 23(2), pages 159-165.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Granger, Clive W. J. & Jeon, Yongil, 2003. "Comparing forecasts of inflation using time distance," International Journal of Forecasting, Elsevier, vol. 19(3), pages 339-349.
    8. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Ruth, Karsten, 2008. "Macroeconomic forecasting in the EMU: Does disaggregate modeling improve forecast accuracy?," Journal of Policy Modeling, Elsevier, vol. 30(3), pages 417-429.
    11. Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
    12. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
    2. BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
    3. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
    4. Mihaela Simionescu, 2015. "The Improvement of Unemployment Rate Predictions Accuracy," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(3), pages 274-286.
    5. Constantin Mitru? & Mihaela Bratu (Simionescu), 2013. "The Indicators’ Inadequacy and the Predictions’ Accuracy," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(4), pages 430-442, August.
    6. Mihaela Simionescu, 2014. "What Type Of Social Capital Is Engaged By The French Dairy Stockbreeders? A Characterization Through Their Professional Identities," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 8(1), pages 87-102, JUNE.
    7. Kuo, Chen-Yin, 2016. "Does the vector error correction model perform better than others in forecasting stock price? An application of residual income valuation theory," Economic Modelling, Elsevier, vol. 52(PB), pages 772-789.
    8. Frederik Kunze, 2020. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 313-333, March.
    9. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    10. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    11. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
    12. Bratu Mihaela, 2013. "An Evaluation Of Usa Unemployment Rate Forecasts In Terms Of Accuracy And Bias. Empirical Methods To Improve The Forecasts Accuracy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 170-180, February.
    13. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    14. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    15. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    16. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    18. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Alessandra Canepa, & Karanasos, Menelaos & Paraskevopoulos, Athanasios & Chini, Emilio Zanetti, 2022. "Forecasting Ination: A GARCH-in-Mean-Level Model with Time Varying Predictability," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202212, University of Turin.
    20. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dug:actaec:y:2013:i:2:p:153-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniela Robu (email available below). General contact details of provider: https://edirc.repec.org/data/fedanro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.