IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/71293.html
   My bibliography  Save this paper

Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?

Author

Listed:
  • Weber, Jeremy G.
  • Key, Nigel
  • O'Donoghue, Erik

Abstract

Farmers dramatically increased their use of federal crop insurance in the 2000s. From 2000 to 2013, premium subsidies increased seven-fold and acres enrolled increased by 77 percent. Although designed for non-environmental goals, subsidized insurance may affect the use of land, fertilizer, and agrochemicals and therefore environmental externalities from agriculture. Using a novel panel data, we examine farmer responses to changes in coverage with an empirical approach that exploits program limits on coverage that were more binding for some farmers than for others. Estimates indicate that expanded coverage had little effect on the share of farmland harvested, crop specialization, productivity, or fertilizer and chemical use. More broadly, we construct and describe a new nation-wide, farm-level panel data set with nearly 32,500 farms observed at least twice over the 2000-2013 period, a resource that should enrich U.S. agro-environmental research.

Suggested Citation

  • Weber, Jeremy G. & Key, Nigel & O'Donoghue, Erik, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," MPRA Paper 71293, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:71293
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/71293/1/MPRA_paper_71293.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Walters, Cory G. & Shumway, C. Richard & Chouinard, Hayley H. & Wandschneider, Philip R., 2012. "Crop Insurance, Land Allocation, and the Environment," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-20, August.
    2. Hendricks, Nathan P. & Sinnathamby, Sumathy & Douglas-Mankin, Kyle & Smith, Aaron & Sumner, Daniel A. & Earnhart, Dietrich H., 2014. "The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 507-526.
    3. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    4. McPhail, Lihong Lu & Babcock, Bruce A., 2012. "Impact of US biofuel policy on US corn and gasoline price variability," Energy, Elsevier, vol. 37(1), pages 505-513.
    5. Nigel Key & Michael Roberts & Erik O'Donoghue, 2006. "Risk and farm operator labour supply," Applied Economics, Taylor & Francis Journals, vol. 38(5), pages 573-586.
    6. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    7. McPhail, Lihong Lu & Du, Xiaodong & Muhammad, Andrew, 2012. "Disentangling Corn Price Volatility: The Role of Global Demand, Speculation, and Energy," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(3), pages 401-410, August.
    8. Ani L. Katchova, 2005. "The Farm Diversification Discount," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 984-994.
    9. Barry K. Goodwin & Monte L. Vandeveer & John L. Deal, 2004. "An Empirical Analysis of Acreage Effects of Participation in the Federal Crop Insurance Program," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1058-1077.
    10. Dismukes, Robert & Coble, Keith H., 2007. "Managing Risk With Revenue Insurance," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6, May.
    11. Beckman, Jayson F. & Borchers, Allison & Jones, Carol, 2013. "Agriculture's Supply and Demand for Energy and Energy Products," Economic Information Bulletin 149033, United States Department of Agriculture, Economic Research Service.
    12. Jeremy G. Weber & Nigel Key, 2012. "How much Do Decoupled Payments Affect Production? An Instrumental Variable Approach with Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 52-66.
    13. Howard D. Leathers & John C. Quiggin, 1991. "Interactions between Agricultural and Resource Policy: The Importance of Attitudes toward Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 757-764.
    14. Quiggin, John C. & Karagiannis, Giannis & Stanton, J., 1993. "Crop Insurance And Crop Production: An Empirical Study Of Moral Hazard And Adverse Selection," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 37(2), pages 1-19, August.
    15. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    16. Xiaodong Du and Lihong Lu McPhail, 2012. "Inside the Black Box: the Price Linkage and Transmission between Energy and Agricultural Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    17. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    18. Cornaggia, Jess, 2013. "Does risk management matter? Evidence from the U.S. agricultural industry," Journal of Financial Economics, Elsevier, vol. 109(2), pages 419-440.
    19. J. Wu & R. M. Adams, 2001. "Production Risk, Acreage Decisions and Implications for Revenue Insurance Programs," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(1), pages 19-35, March.
    20. Keith H. Coble & Thomas O. Knight & Rulon D. Pope & Jeffery R. Williams, 1996. "Modeling Farm-Level Crop Insurance Demand with Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 439-447.
    21. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413.
    22. Joe Dewbre, 2006. "The Impact of Coupled and Decoupled Government Subsidies on Off-Farm Labor Participation of U.S. Farm Operators," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 393-408.
    23. Vincent H. Smith & Barry K. Goodwin, 1996. "Crop Insurance, Moral Hazard, and Agricultural Chemical Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 428-438.
    24. Erik J. O’Donoghue & Michael J. Roberts & Nigel Key, 2009. "Did the Federal Crop Insurance Reform Act Alter Farm Enterprise Diversification?," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 80-104, February.
    25. C. Edwin Young & Monte L. Vandeveer & Randall D. Schnepf, 2001. "Production and Price Impacts of U.S. Crop Insurance Programs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(5), pages 1196-1203.
    26. JunJie Wu, 1999. "Crop Insurance, Acreage Decisions, and Nonpoint-Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 305-320.
    27. Barry K. Goodwin & Vincent H. Smith, 2013. "What Harm Is Done By Subsidizing Crop Insurance?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 489-497.
    28. Jeremy G. Weber & Dawn Marie Clay, 2013. "Who Does Dot Respond to the Agricultural Resource Management Survey and Does It Matter?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(3), pages 755-771.
    29. John K. Horowitz & Erik Lichtenberg, 1993. "Insurance, Moral Hazard, and Chemical Use in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 926-935.
    30. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weber, Jeremy G. & Key, Nigel & O'Donoghue, Erik J., 2015. "Does Federal Crop Insurance Encourage Farm Specialization and Fertilizer and Chemical Use?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204972, Agricultural and Applied Economics Association.
    2. Feng, Shuaizhang & Han, Yujie & Qiu, Huanguang, 2021. "Does crop insurance reduce pesticide usage? Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    3. Lu, Xun & Che, Yuyuan & Rejesus, Roderick M. & Goodwin, Barry K. & Ghosh, Sujit K. & Paudel, Jayash, 2023. "Unintended environmental benefits of crop insurance: Nitrogen and phosphorus in water bodies," Ecological Economics, Elsevier, vol. 204(PA).
    4. Möhring, Niklas & Dalhaus, Tobias & Enjolras, Geoffroy & Finger, Robert, 2020. "Crop insurance and pesticide use in European agriculture," Agricultural Systems, Elsevier, vol. 184(C).
    5. Glauber, Joseph W., 2017. "Agricultural insurance and the WTO:," IFPRI book chapters, in: Bouët, Antoine & Laborde Debucquet, David (ed.), Agriculture, development, and the global trading system: 2000– 2015, chapter 10, International Food Policy Research Institute (IFPRI).
    6. Coleman, Jane A. & Shaik, Saleem, 2009. "Time-Varying Estimation of Crop Insurance Program in Altering North Dakota Farm Economic Structure," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49516, Agricultural and Applied Economics Association.
    7. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    8. Geoffroy Enjolras & Magali Aubert, 2020. "How does crop insurance influence pesticide use? Evidence from French farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 461-485, December.
    9. Lubowski, Ruben N. & Bucholtz, Shawn & Claassen, Roger & Roberts, Michael J. & Cooper, Joseph C. & Gueorguieva, Anna & Johansson, Robert C., 2006. "Environmental Effects Of Agricultural Land-Use Change: The Role Of Economics And Policy," Economic Research Report 33591, United States Department of Agriculture, Economic Research Service.
    10. Yu, Jisang & Smith, Aaron & Sumner, Daniel A., 2016. "The Effects of the Premium Subsidies in the U.S. Federal Crop Insurance Program on Crop Acreage," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236022, Agricultural and Applied Economics Association.
    11. Olen, Beau & Wu, Junjie, 2013. "Supply of Insurance for Specialty Crops and its Effect on Yield and Acreage," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150787, Agricultural and Applied Economics Association.
    12. Juan He & Xiaoyong Zheng & Roderick Rejesus & Jose Yorobe, 2020. "Input use under cost‐of‐production crop insurance: Theory and evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 343-357, May.
    13. Biram, Hunter D. & Tack, Jesse & Nehring, Richard F., 2022. "Does Crop Insurance Participation Impact Quality-Adjusted Pesticide Usage?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322136, Agricultural and Applied Economics Association.
    14. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    15. He, Juan & Zheng, Xiaoyong & Rejesus, Roderick & Yorobe, Jose Jr, 2016. "Estimating the Effect of Crop Insurance on Input Use When Insured Farmers are Monitored," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235225, Agricultural and Applied Economics Association.
    16. Salazar, Cesar & Jaime, Marcela & Pinto, Cristian & Acuna, Andres, 2019. "Interaction between crop insurance and technology adoption decisions: The case of wheat farmers in Chile," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    17. Roger Claassen & Christian Langpap & JunJie Wu, 2017. "Impacts of Federal Crop Insurance on Land Use and Environmental Quality," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 592-613, April.
    18. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    19. Chongshang Zhang & Kaiyu Lyu & Chi Zhang, 2024. "The Impact of Crop Insurance on Fertilizer Use: Evidence from Grain Producers in China," Agriculture, MDPI, vol. 14(3), pages 1-13, March.
    20. Geoffroy Enjolras & Magali Aubert, 2018. "Does crop insurance lead to better environmental practices? Evidence from French farms," Post-Print hal-02048349, HAL.

    More about this item

    Keywords

    Crop insurance; agriculture; environmental externalities; fertilizer;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:71293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.