IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v154y2018icp100-120.html
   My bibliography  Save this article

Endogenous growth and entropy

Author

Listed:
  • Sequeira, Tiago Neves
  • Gil, Pedro Mazeda
  • Afonso, Oscar

Abstract

This paper offers novel insights regarding the role of complexity in both the transitional and the long-run dynamics of the economy. We devise an endogenous growth model that encompasses long-run economic change building on the concept of entropy as a time-varying state-dependent complexity effect. We show that the empirical evidence supports entropy as an ’operator’ of the complexity effect. It also suggests that part of the modern innovations have a stabilizing role in the complexity of the economies, as the ‘operator’ levels off despite the continuous increase in the measure of technological varieties. The model features endogenous growth, with null or small scale effects, or stagnation, in the long run. The model can replicate well the take-off after the industrial revolution and the productivity slowdown in the second half of the XXth century. Long-run scenarios based on in-sample calibration are discussed, and may help explain (part of) the growth crises affecting the current generation.

Suggested Citation

  • Sequeira, Tiago Neves & Gil, Pedro Mazeda & Afonso, Oscar, 2018. "Endogenous growth and entropy," Journal of Economic Behavior & Organization, Elsevier, vol. 154(C), pages 100-120.
  • Handle: RePEc:eee:jeborg:v:154:y:2018:i:c:p:100-120
    DOI: 10.1016/j.jebo.2018.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268118302002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2018.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oded Galor & Omer Moav, 2002. "Natural Selection and the Origin of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1133-1191.
    2. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    3. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," Review of Economic Studies, Oxford University Press, vol. 86(2), pages 807-835.
    4. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.
    5. Komlos John, 2016. "Has Creative Destruction become more Destructive?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 16(4), pages 1-12, October.
    6. Charles I. Jones, 2002. "Sources of U.S. Economic Growth in a World of Ideas," American Economic Review, American Economic Association, vol. 92(1), pages 220-239, March.
    7. Bucci, Alberto & Carbonari, Lorenzo & Trovato, Giovanni, 2021. "Variety, Competition, And Population In Economic Growth: Theory And Empirics," Macroeconomic Dynamics, Cambridge University Press, vol. 25(5), pages 1303-1330, July.
    8. Alvarez-Pelaez, Maria J. & Groth, Christian, 2005. "Too little or too much R&D?," European Economic Review, Elsevier, vol. 49(2), pages 437-456, February.
    9. John G. Fernald, 2015. "Productivity and Potential Output before, during, and after the Great Recession," NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.
    10. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    11. de Groot, Henri L. F. & Nahuis, Richard, 1998. "Taste for diversity and the optimality of economic growth," Economics Letters, Elsevier, vol. 58(3), pages 291-295, March.
    12. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    13. Jutta Bolt & Jan Luiten Zanden, 2014. "The Maddison Project: collaborative research on historical national accounts," Economic History Review, Economic History Society, vol. 67(3), pages 627-651, August.
    14. Kenneth L. Sokoloff, 1988. "Inventive Activity in Early Industrial America: Evidence From Patent Records, 1790 - 1846," NBER Working Papers 2707, National Bureau of Economic Research, Inc.
    15. Gregory Clark, 2009. "The Macroeconomic Aggregates for England, 1209-2008," Working Papers 919, University of California, Davis, Department of Economics.
    16. Peretto, Pietro F., 2015. "From Smith to Schumpeter: A theory of take-off and convergence to sustained growth," European Economic Review, Elsevier, vol. 78(C), pages 1-26.
    17. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    18. Growiec, Jakub, 2015. "On the modeling of size distributions when technologies are complex," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 1-8.
    19. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    20. Michael Elsby & Bart Hobijn & Ayseful Sahin, 2013. "The Decline of the U.S. Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(2 (Fall)), pages 1-63.
    21. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    22. Benassy, Jean-Pascal, 1996. "Taste for variety and optimum production patterns in monopolistic competition," Economics Letters, Elsevier, vol. 52(1), pages 41-47, July.
    23. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    24. Ciccone, Antonio & Matsuyama, Kiminori, 1996. "Start-up costs and pecuniary externalities as barriers to economic development," Journal of Development Economics, Elsevier, vol. 49(1), pages 33-59, April.
    25. Maddison, Angus, 2007. "Contours of the World Economy 1-2030 AD: Essays in Macro-Economic History," OUP Catalogue, Oxford University Press, number 9780199227204.
    26. Scott L. Baier & Gerald P. Dwyer & Robert Tamura, 2006. "How Important are Capital and Total Factor Productivity for Economic Growth?," Economic Inquiry, Western Economic Association International, vol. 44(1), pages 23-49, January.
    27. Brinca, P. & Chari, V.V. & Kehoe, P.J. & McGrattan, E., 2016. "Accounting for Business Cycles," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1013-1063, Elsevier.
    28. Elias Dinopoulos & Peter Thompson, 1999. "Scale effects in Schumpeterian models of economic growth," Journal of Evolutionary Economics, Springer, vol. 9(2), pages 157-185.
    29. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    30. Gregory Clark, 2010. "The macroeconomic aggregates for England, 1209–2008," Research in Economic History, in: Research in Economic History, pages 51-140, Emerald Group Publishing Limited.
    31. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    32. Growiec, Jakub, 2013. "A microfoundation for normalized CES production functions with factor-augmenting technical change," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2336-2350.
    33. Paul Segerstrom & Elias Dinopoulos, 1999. "A Schumpeterian Model of Protection and Relative Wages," American Economic Review, American Economic Association, vol. 89(3), pages 450-472, June.
    34. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    35. Sokoloff, Kenneth L., 1988. "Inventive Activity in Early Industrial America: Evidence From Patent Records, 1790–1846," The Journal of Economic History, Cambridge University Press, vol. 48(4), pages 813-850, December.
    36. Davis, Lewis S., 2008. "Scale effects in growth: A role for institutions," Journal of Economic Behavior & Organization, Elsevier, vol. 66(2), pages 403-419, May.
    37. Alessandro Iaria & Carlo Schwarz & Fabian Waldinger, 2018. "Frontier Knowledge and Scientific Production: Evidence from the Collapse of International Science," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 927-991.
    38. Choi, In & Saikkonen, Pentti, 2010. "Tests For Nonlinear Cointegration," Econometric Theory, Cambridge University Press, vol. 26(3), pages 682-709, June.
    39. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    40. Dinopoulos, Elias & Thompson, Peter, 2000. "Endogenous growth in a cross-section of countries," Journal of International Economics, Elsevier, vol. 51(2), pages 335-362, August.
    41. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    42. Mokyr, Joel, 2005. "Long-Term Economic Growth and the History of Technology," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 17, pages 1113-1180, Elsevier.
    43. Benassy, Jean-Pascal, 1998. "Is there always too little research in endogenous growth with expanding product variety?," European Economic Review, Elsevier, vol. 42(1), pages 61-69, January.
    44. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    45. Magalhães, Manuela & Afonso, Óscar, 2017. "A multi-sector growth model with technology diffusion and networks," Research Policy, Elsevier, vol. 46(7), pages 1340-1359.
    46. Ang, James B. & Madsen, Jakob B., 2015. "What Drives Ideas Production Across The World?," Macroeconomic Dynamics, Cambridge University Press, vol. 19(1), pages 79-115, January.
    47. Carl‐Johan Dalgaard & Claus Thustrup Kreiner, 2003. "Endogenous Growth: A Knife Edge or the Razor's Edge?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 73-86, March.
    48. Alesina, Alberto & Spolaore, Enrico & Wacziarg, Romain, 2005. "Trade, Growth and the Size of Countries," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 23, pages 1499-1542, Elsevier.
    49. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    50. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    51. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    52. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    53. Michael Kremer, 1993. "Population Growth and Technological Change: One Million B.C. to 1990," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 681-716.
    54. Alberto Bucci, 2015. "Product Proliferation, Population, and Economic Growth," Journal of Human Capital, University of Chicago Press, vol. 9(2), pages 170-197.
    55. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naudé, Wim, 2019. "The Race against the Robots and the Fallacy of the Giant Cheesecake: Immediate and Imagined Impacts of Artificial Intelligence," IZA Discussion Papers 12218, Institute of Labor Economics (IZA).
    2. Gil, Pedro Mazeda & Iglésias, Gustavo & Guimarães, Luís, 2023. "Endogenous growth and monetary policy: How do interest-rate feedback rules shape nominal and real transitional dynamics?," Journal of International Money and Finance, Elsevier, vol. 138(C).
    3. Tiago Sequeira & Hugo Morão, 2020. "Growth accounting and regressions: New approach and results," International Economics, CEPII research center, issue 162, pages 67-79.
    4. Antonelli, Cristiano & Crespi, Francesco & Quatraro, Francesco, 2022. "Knowledge complexity and the mechanisms of knowledge generation and exploitation: The European evidence," Research Policy, Elsevier, vol. 51(8).
    5. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    6. Barbara Annicchiarico & Valentina Antonaroli & Alessandra Pelloni, 2022. "Optimal factor taxation in a scale free model of vertical innovation," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 794-830, April.
    7. Orlando Gomes, 2021. "Growth theory under heterogeneous heuristic behavior," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 533-571, April.
    8. Wim Naudé, 2022. "From the entrepreneurial to the ossified economy," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 46(1), pages 105-131.
    9. Bucci, Alberto & Carbonari, Lorenzo & Gil, Pedro Mazeda & Trovato, Giovanni, 2021. "Economic growth and innovation complexity: An empirical estimation of a Hidden Markov Model," Economic Modelling, Elsevier, vol. 98(C), pages 86-99.
    10. Naudé, Wim, 2020. "From the Entrepreneurial to the Ossified Economy: Evidence, Explanations and a New Perspective," GLO Discussion Paper Series 539, Global Labor Organization (GLO).
    11. Óscar Afonso, 2022. "Growth and wage effects of the monetary policy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4058-4084, October.
    12. Naudé, Wim, 2019. "The decline in entrepreneurship in the West: Is complexity ossifying the economy?," MERIT Working Papers 2019-030, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. Oscar Afonso & Tiago Sequeira & Derick Almeida, 2023. "Technological knowledge and wages: from skill premium to wage polarization," Journal of Economics, Springer, vol. 140(2), pages 93-119, October.
    14. Catarina Peralta & Pedro Mazeda Gil, 2021. "Automation, Education, and Population: Dynamic Effects in an OLG Growth and Fertility Model," CEF.UP Working Papers 2102, Universidade do Porto, Faculdade de Economia do Porto.
    15. Óscar Afonso & Tiago Neves Sequeira & Marcelo Santos & Pedro Cunha Neves, 2023. "Global Firms, (de)unionization and Wage Inequality," Open Economies Review, Springer, vol. 34(5), pages 979-1013, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Neves Sequeira & Pedro Mazeda Gil & Óscar Afonso, 2016. "Growth without scale effects due to entropy," CEFAGE-UE Working Papers 2016_07, University of Evora, CEFAGE-UE (Portugal).
    2. Bucci, Alberto & Carbonari, Lorenzo & Gil, Pedro Mazeda & Trovato, Giovanni, 2021. "Economic growth and innovation complexity: An empirical estimation of a Hidden Markov Model," Economic Modelling, Elsevier, vol. 98(C), pages 86-99.
    3. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    4. Jones, C.I., 2016. "The Facts of Economic Growth," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 3-69, Elsevier.
    5. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    6. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.
    7. Neves, Pedro Cunha & Sequeira, Tiago Neves, 2018. "Spillovers in the production of knowledge: A meta-regression analysis," Research Policy, Elsevier, vol. 47(4), pages 750-767.
    8. Davis, Lewis S., 2008. "Scale effects in growth: A role for institutions," Journal of Economic Behavior & Organization, Elsevier, vol. 66(2), pages 403-419, May.
    9. Alberto Bucci & Klaus Prettner, 2020. "Endogenous education and the reversal in the relationship between fertility and economic growth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(3), pages 1025-1068, July.
    10. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.
    11. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    12. Elie Gray & André Grimaud, 2014. "The Lindahl Equilibrium in Schumpeterian Growth Models: Knowledge Diffusion, Social Value of Innovations and Optimal R&D Incentives," CESifo Working Paper Series 4678, CESifo.
    13. Fernando Sánchez‐Losada, 2019. "How Important Are Scale Effects for Growth When Knowledge Is a Public Good?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 121(2), pages 763-782, April.
    14. Boikos, Spyridon & Bucci, Alberto & Stengos, Thanasis, 2022. "Leisure and innovation in horizontal R&D-based growth," Economic Modelling, Elsevier, vol. 107(C).
    15. Benjamin Montmartin & Nadine Massard, 2015. "Is Financial Support For Private R&D Always Justified? A Discussion Based On The Literature On Growth," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 479-505, July.
    16. Creina Day, 2016. "Non-Scale Endogenous Growth with R&D and Human Capital," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(5), pages 443-467, November.
    17. Sener, Fuat, 2008. "R&D policies, endogenous growth and scale effects," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3895-3916, December.
    18. Kemnitz, Alexander & Knoblach, Michael, 2020. "Endogenous sigma-augmenting technological change: An R&D-based approach," CEPIE Working Papers 02/20, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    19. Naudé, Wim, 2020. "From the Entrepreneurial to the Ossified Economy: Evidence, Explanations and a New Perspective," GLO Discussion Paper Series 539, Global Labor Organization (GLO).
    20. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.

    More about this item

    Keywords

    Endogenous growth; Complexity effects; Entropy; Knowledge production function; R&D;
    All these keywords.

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:154:y:2018:i:c:p:100-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.