IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v195y2016i2p169-186.html
   My bibliography  Save this article

Dynamic panels with threshold effect and endogeneity

Author

Listed:
  • Seo, Myung Hwan
  • Shin, Yongcheol

Abstract

This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors to be endogenous. When the threshold variable becomes strictly exogenous, we propose a more efficient two-step least squares estimator. We provide asymptotic theory and develop the testing procedure for threshold effects and the threshold variable exogeneity. Monte Carlo studies provide a support for theoretical predictions. We present an empirical application investigating an asymmetric sensitivity of investment to cash flows.

Suggested Citation

  • Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
  • Handle: RePEc:eee:econom:v:195:y:2016:i:2:p:169-186
    DOI: 10.1016/j.jeconom.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616301506
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    2. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    3. Kourtellos, Andros & Stengos, Thanasis & Tan, Chih Ming, 2016. "Structural Threshold Regression," Econometric Theory, Cambridge University Press, vol. 32(04), pages 827-860, August.
    4. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    7. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    8. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(05), pages 813-843, October.
    9. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    10. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    11. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    12. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1989. "The Revenues-Expenditures Nexus: Evidence from Local Government Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(2), pages 415-429, May.
    13. Skinner, Douglas J., 2008. "The evolving relation between earnings, dividends, and stock repurchases," Journal of Financial Economics, Elsevier, vol. 87(3), pages 582-609, March.
    14. Stephanie Kremer & Alexander Bick & Dieter Nautz, 2013. "Inflation and growth: new evidence from a dynamic panel threshold analysis," Empirical Economics, Springer, vol. 44(2), pages 861-878, April.
    15. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    16. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    17. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    18. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, January.
    19. Steven M. Fazzari & R. Glenn Hubbard & Bruce C. Petersen, 1988. "Financing Constraints and Corporate Investment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 19(1), pages 141-206.
    20. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    21. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    22. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    23. Sokwon Kim & Byeongseon Seo, 2010. "Asymmetric dividend smoothing in the aggregate stock market," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 349-355.
    24. Hovakimian, Gayane & Titman, Sheridan, 2006. "Corporate Investment with Financial Constraints: Sensitivity of Investment to Funds from Voluntary Asset Sales," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(2), pages 357-374, March.
    25. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    26. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    27. Marsh, Terry A & Merton, Robert C, 1987. "Dividend Behavior for the Aggregate Stock Market," The Journal of Business, University of Chicago Press, vol. 60(1), pages 1-40, January.
    28. Brav, Alon & Graham, John R. & Harvey, Campbell R. & Michaely, Roni, 2005. "Payout policy in the 21st century," Journal of Financial Economics, Elsevier, vol. 77(3), pages 483-527, September.
    29. Toni M. Whited & Guojun Wu, 2006. "Financial Constraints Risk," Review of Financial Studies, Society for Financial Studies, vol. 19(2), pages 531-559.
    30. McMillan, David G., 2007. "Bubbles in the dividend-price ratio? Evidence from an asymmetric exponential smooth-transition model," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 787-804, March.
    31. Dang, Viet Anh & Kim, Minjoo & Shin, Yongcheol, 2012. "Asymmetric capital structure adjustments: New evidence from dynamic panel threshold models," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 465-482.
    32. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    33. Jensen, Michael C, 1986. "Agency Costs of Free Cash Flow, Corporate Finance, and Takeovers," American Economic Review, American Economic Association, vol. 76(2), pages 323-329, May.
    34. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    35. Kapetanios, George, 2010. "Testing For Exogeneity In Threshold Models," Econometric Theory, Cambridge University Press, vol. 26(01), pages 231-259, February.
    36. Aivazian, Varouj A. & Ge, Ying & Qiu, Jiaping, 2005. "The impact of leverage on firm investment: Canadian evidence," Journal of Corporate Finance, Elsevier, vol. 11(1-2), pages 277-291, March.
    37. Lang, Larry & Ofek, Eli & Stulz, Rene M., 1996. "Leverage, investment, and firm growth," Journal of Financial Economics, Elsevier, vol. 40(1), pages 3-29, January.
    38. Mark T. Leary & Roni Michaely, 2011. "Determinants of Dividend Smoothing: Empirical Evidence," Review of Financial Studies, Society for Financial Studies, vol. 24(10), pages 3197-3249.
    39. Chen, Haiqiang & Chong, Terence Tai Leung & Bai, Jushan, 2012. "Theory and Applications of TAR Model with Two Threshold Variables," MPRA Paper 54527, University Library of Munich, Germany.
    40. Yu, Ping, 2013. "Inconsistency of 2SLS estimators in threshold regression with endogeneity," Economics Letters, Elsevier, vol. 120(3), pages 532-536.
    41. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    42. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    43. Yixiao Sun, 2014. "Fixed‐Smoothing Asymptotics in a Two‐Step Generalized Method of Moments Framework," Econometrica, Econometric Society, vol. 82, pages 2327-2370, November.
    44. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    45. Hsiao, Cheng & Zhang, Junwei, 2015. "IV, GMM or likelihood approach to estimate dynamic panel models when either N or T or both are large," Journal of Econometrics, Elsevier, vol. 187(1), pages 312-322.
    46. Dick van Dijk & Dennis Fok & Philip Hans Franses, 2005. "A multi-level panel STAR model for US manufacturing sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 811-827.
    47. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecolet:v:157:y:2017:i:c:p:116-121 is not listed on IDEAS
    2. Gebauer, Stefan & Setzer, Ralph & Westphal, Andreas, 2017. "Corporate debt and investment: a firm level analysis for stressed euro area countries," Working Paper Series 2101, European Central Bank.
    3. Andros Kourtellos & Thanasis Stengos & Yiguo Sun, 2017. "Endogeneity in Semiparametric Threshold Regression," University of Cyprus Working Papers in Economics 10-2017, University of Cyprus Department of Economics.
    4. Gonzalo, Jesús & Olmo, José, 2016. "Long-term optimal portfolio allocation under dynamic horizon-specific risk aversion," UC3M Working papers. Economics 23599, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Asimakopoulos, Stylianos & Karavias, Yiannis, 2016. "The impact of government size on economic growth: A threshold analysis," Economics Letters, Elsevier, vol. 139(C), pages 65-68.

    More about this item

    Keywords

    Dynamic panel threshold models; Endogenous threshold effects and regressors; FD-GMM and FD-2SLS; Linearity and exogeneity tests; Investment;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:195:y:2016:i:2:p:169-186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.