IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The Weak Instrument Problem of the System GMM Estimator in Dynamic Panel Data Models

  • Maurice J.G. Bun
  • Frank Windmeijer


The system GMM estimator for dynamic panel data models combines moment conditions for the model in first differences with moment conditions for the model in levels. It has been shown to improve on the GMM estimator in the first differenced model in terms of bias and root mean squared error. However, we show in this paper that in the covariance stationary panel data AR(1) model the expected values of the concentration parameters in the differenced and levels equations for the crosssection at time t are the same when the variances of the individual heterogeneity and idiosyncratic errors are the same. This indicates a weak instrument problem also for the equation in levels. We show that the 2SLS biases relative to that of the OLS biases are then similar for the equations in differences and levels, as are the size distortions of the Wald tests. These results are shown in a Monte Carlo study to extend to the panel data system GMM estimator.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics, University of Bristol, UK in its series Bristol Economics Discussion Papers with number 07/595.

in new window

Length: 29 pages
Date of creation: Mar 2007
Date of revision:
Handle: RePEc:bri:uobdis:07/595
Contact details of provider: Postal: 8 Woodland Road, Bristol, BS8 1TN
Phone: 0117 928 8415
Fax: 0117 928 8577
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alvarez, J. & Arellano, M., 1998. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Papers 9808, Centro de Estudios Monetarios Y Financieros-.
  2. Stephen Bond & Frank Windmeijer, 2005. "Reliable Inference For Gmm Estimators? Finite Sample Properties Of Alternative Test Procedures In Linear Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 1-37.
  3. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," Review of Economic Studies, Oxford University Press, vol. 70(2), pages 317-341.
  4. Griffith, Rachel & Harrison, Rupert & Van Reenen, John, 2004. "How Special is the Special Relationship? Using the Impact of US R&D Spillovers on UK Firms as a Test of Technology Sourcing," CEPR Discussion Papers 4698, C.E.P.R. Discussion Papers.
  5. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
  6. Peter C. B. Phillips & Chirok Han, 2004. "GMM with Many Moment Conditions," Econometric Society 2004 Far Eastern Meetings 525, Econometric Society.
  7. Richard Blundell & Steve Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
  8. James Levinsohn & Amil Petrin, 2000. "Estimating Production Functions Using Inputs to Control for Unobservables," NBER Working Papers 7819, National Bureau of Economic Research, Inc.
  9. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  10. Kazuhiko Hayakawa, 2005. "Small Sample Bias Propreties of the System GMM Estimator in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d05-82, Institute of Economic Research, Hitotsubashi University.
  11. Gabriel A. Picone & Frank Sloan & Justin G. Trogdon, 2004. "The effect of the tobacco settlement and smoking bans on alcohol consumption," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1063-1080.
  12. Thorsten Beck & Ross Levine & Norman Loayza, 1999. "Financial Intermediation and Growth: Causality and Causes," Working Papers Central Bank of Chile 56, Central Bank of Chile.
  13. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
  14. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-80, January.
  15. Blundell, R. & Bond, S., 1995. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," Economics Papers 104, Economics Group, Nuffield College, University of Oxford.
  16. Kruiniger, Hugo, 2009. "Gmm Estimation And Inference In Dynamic Panel Data Models With Persistent Data," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1348-1391, October.
  17. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  18. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  19. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
  20. Arellano, Manuel & Bond, Stephen, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Wiley Blackwell, vol. 58(2), pages 277-97, April.
  21. Kazuhiko Hayakawa, 2006. "The Asymptotic Properties of the System GMM Estimator in Dynamic Panel Data Models When Both N and T are Large," Hi-Stat Discussion Paper Series d05-129, Institute of Economic Research, Hitotsubashi University.
  22. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
  23. Morimune, Kimio, 1989. "Test in a Structural Equation," Econometrica, Econometric Society, vol. 57(6), pages 1341-60, November.
  24. Whitney Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  25. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
  26. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  27. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  28. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
  29. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  30. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bri:uobdis:07/595. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jonathan Temple)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.