IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Gmm Estimation And Inference In Dynamic Panel Data Models With Persistent Data

  • Kruiniger, Hugo

In this paper we consider generalized method of moments–based (GMM-based) estimation and inference for the panel AR(1) model when the data are persistent and the time dimension of the panel is fixed. We find that the nature of the weak instruments problem of the Arellano–Bond (Arellano and Bond, 1991, Review of Economic Studies 58, 277–297) estimator depends on the distributional properties of the initial observations. Subsequently, we derive local asymptotic approximations to the finite-sample distributions of the Arellano–Bond estimator and the System estimator, respectively, under a variety of distributional assumptions about the initial observations and discuss the implications of the results we obtain for doing inference. We also propose two Lagrange multiplier–type (LM-type) panel unit root tests.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 25 (2009)
Issue (Month): 05 (October)
Pages: 1348-1391

in new window

Handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1348-1391_09
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter C.B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Cowles Foundation Discussion Papers 1222, Cowles Foundation for Research in Economics, Yale University.
  2. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  3. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, 01.
  4. Steve Bond & Frank Windmeijer, 2002. "Finite sample inference for GMM estimators in linear panel data models," CeMMAP working papers CWP04/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  5. Moon, Hyungsik R. & Phillips, Peter C.B., 1999. "Estimation of Autoregressive Roots near Unity using Panel Data," University of California at Santa Barbara, Economics Working Paper Series qt7fd8x80m, Department of Economics, UC Santa Barbara.
  6. R Blundell & Steven Bond, . "Initial conditions and moment restrictions in dynamic panel data model," Economics Papers W14&104., Economics Group, Nuffield College, University of Oxford.
  7. Hugo Kruiniger, 2000. "GMM Estimation of Dynamic Panel Data Models with Persistent Data," Working Papers 428, Queen Mary University of London, School of Economics and Finance.
  8. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
  9. Hugo Kruiniger, 2002. "On the Estimation of Panel Regression Models with Fixed Effects," Working Papers 450, Queen Mary University of London, School of Economics and Finance.
  10. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
  11. Kruiniger, Hugo, 2008. "Maximum likelihood estimation and inference methods for the covariance stationary panel AR(1)/unit root model," Journal of Econometrics, Elsevier, vol. 144(2), pages 447-464, June.
  12. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
  13. Steve Bond & Céline Nauges & Frank Windmeijer, 2005. "Unit roots: identification and testing in micro panels," CeMMAP working papers CWP07/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  14. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1348-1391_09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.