IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v95y2007i1p32-38.html
   My bibliography  Save this article

Small sample bias properties of the system GMM estimator in dynamic panel data models

Author

Listed:
  • Hayakawa, Kazuhiko

Abstract

This paper examines analytically and experimentally why the system GMM estimator in dynamic panel data models is less biased than the first differencing or the level estimators even though the former uses more instruments. We find that the bias of the system GMM estimator is a weighted sum of the biases in opposite directions of the first differencing and the level estimator. We also find that an important condition for the system GMM estimator to have small bias is that the variances of the individual effects and the disturbances are almost of the same magnitude. If the variance of individual effects is much larger than that of disturbances, then all GMM estimators are heavily biased. To reduce such biases, we propose bias-corrected GMM estimators. On the other hand, if the variance of individual effects is smaller than that of disturbances, the system estimator has a more severe downward bias than the level estimator.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
  • Handle: RePEc:eee:ecolet:v:95:y:2007:i:1:p:32-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(06)00313-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Koenker, Roger & Machado, Jose A. F., 1999. "GMM inference when the number of moment conditions is large," Journal of Econometrics, Elsevier, vol. 93(2), pages 327-344, December.
    3. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    4. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
    5. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    6. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    7. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    8. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    9. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    10. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    2. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    3. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    4. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    5. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    6. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    7. Opolska, Iweta, 2017. "The efficacy of liberalization and privatization in introducing competition into European natural gas markets," Utilities Policy, Elsevier, vol. 48(C), pages 12-21.
    8. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    9. Giovanni Favara & Jean Imbs, 2015. "Credit Supply and the Price of Housing," American Economic Review, American Economic Association, vol. 105(3), pages 958-992, March.
    10. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    11. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    12. Kruiniger, Hugo, 2009. "Gmm Estimation And Inference In Dynamic Panel Data Models With Persistent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1348-1391, October.
    13. Christian Merkl & Stephanie Stolz, 2009. "Banks' regulatory buffers, liquidity networks and monetary policy transmission," Applied Economics, Taylor & Francis Journals, vol. 41(16), pages 2013-2024.
    14. Diego Escobari, 2012. "Dynamic Pricing, Advance Sales and Aggregate Demand Learning in Airlines," Journal of Industrial Economics, Wiley Blackwell, vol. 60(4), pages 697-724, December.
    15. Kerstin Bernoth & Andrew Hughes Hallet & John Lewis, 2008. "Did fiscal policy makers know what they were doing? Reassessing fiscal policy with real-time data," DNB Working Papers 169, Netherlands Central Bank, Research Department.
    16. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    17. Andrés Rodríguez‐Pose & Vassilis Tselios, 2009. "Education And Income Inequality In The Regions Of The European Union," Journal of Regional Science, Wiley Blackwell, vol. 49(3), pages 411-437, August.
    18. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    19. Osvaldo Lagares, 2016. "Capital, Economic Growth and Relative Income Differences in Latin America," Discussion Papers 16/03, Department of Economics, University of York.
    20. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:95:y:2007:i:1:p:32-38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.