IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.20855.html
   My bibliography  Save this paper

Uniform Quasi ML based inference for the panel AR(1) model

Author

Listed:
  • Hugo Kruiniger

Abstract

This paper proposes new inference methods for panel AR models with arbitrary initial conditions and heteroskedasticity and possibly additional regressors that are robust to the strength of identification. Specifically, we consider several Maximum Likelihood based methods of constructing tests and confidence sets (CSs) and show that (Quasi) LM tests and CSs that use the expected Hessian rather than the observed Hessian of the log-likelihood have correct asymptotic size (in a uniform sense). We derive the power envelope of a Fixed Effects version of such a LM test for hypotheses involving the autoregressive parameter when the average information matrix is estimated by a centered OPG estimator and the model is only second-order identified, and show that it coincides with the maximal attainable power curve in the worst case setting. We also study the empirical size and power properties of these (Quasi) LM tests and CSs.

Suggested Citation

  • Hugo Kruiniger, 2025. "Uniform Quasi ML based inference for the panel AR(1) model," Papers 2508.20855, arXiv.org.
  • Handle: RePEc:arx:papers:2508.20855
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.20855
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.