IDEAS home Printed from https://ideas.repec.org/p/man/sespap/1703.html

Inference in Second-Order Identified Models

Author

Listed:
  • Prosper Dovonon
  • Alastair R. Hall
  • Frank Kleibergen

Abstract

First-order asymptotic analyses of the Generalized Method of Moments (GMM) estimator and its associated statistics are based on the assumption that the population moment condition identifies the parameter vector both globally and locally at first order. In linear models, global and firstorder local identification are equivalent but in nonlinear models they are not. In certain econometric models of interest, parameters are globally identified but only identified locally at second order. In these scenarios the standard GMM inference techniques based on first-order asymptotics are invalid, see Dovonon and Renault (2013) and Dovonon and Hall (2016). In this paper, we explore how to perform inference in moment condition models that only identify the parameters locally to second order. For inference about the parameters, we consider inference based on conventional Wald and LM statistics, and also the Generalized Anderson Rubin (GAR) statistic (Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright, 2000) and the KLM statistic (Kleibergen, 2002, 2005). Both the GAR and KLM statistics have been proposed as methods of inference in the presence of weak identification and are known to be “identification robust” in the sense that their limiting distribution is the same under first-order and weak identification. For inference about the model specification, we consider the identification-robust J statistic (Kleibergen, 2005) and the GAR statistic. In each case, we derive the limiting distribution of statistics under both null and local alternative hypotheses. We show that under their respective null hypotheses the GAR, KLM and J statistics have the same limiting distribution as would apply under first-order or weak identification, thus showing their identification robustness extends to second-order identification. We explore the power properties in detail in two empirically relevant models with second-order identification. In the panel autoregressive (AR) model of order one, our analysis indicates that the Wald test of whether the AR parameter is one has superior power to the corresponding GAR test which, in turn, dominates the KLM and LM tests. For the conditionally heteroskedastic factor model, we compare Kleibergen’s (2005) J and the GAR statistics to Hansen’s (1982) overidentifying restrictions test (previously analyzed in this context by Dovonon and Renault, 2013) and find the power ranking depends on the sample size. Collectively, our results suggest that tests with meaningful power can be conducted in second-order identified models.

Suggested Citation

  • Prosper Dovonon & Alastair R. Hall & Frank Kleibergen, 2017. "Inference in Second-Order Identified Models," Economics Discussion Paper Series 1703, Economics, The University of Manchester.
  • Handle: RePEc:man:sespap:1703
    as

    Download full text from publisher

    File URL: http://hummedia.manchester.ac.uk/schools/soss/economics/discussionpapers/EDP-1703.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Kruiniger, 2023. "Large sample properties of GMM estimators under second-order identification," Papers 2307.13475, arXiv.org, revised Aug 2025.
    2. Hugo Kruiniger, 2025. "Uniform Quasi ML based inference for the panel AR(1) model," Papers 2508.20855, arXiv.org, revised Dec 2025.
    3. Sentana, Enrique, 2025. "Reprint of: Finite underidentification," Journal of Econometrics, Elsevier, vol. 248(C).
    4. Sentana, Enrique, 2024. "Finite underidentification," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Juodis, Arturas & Sarafidis, Vasilis, 2020. "Online Supplement to An Incidental Parameters Free Inference Approach for Panels with Common Shocks," MPRA Paper 104908, University Library of Munich, Germany.
    6. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:man:sespap:1703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Patrick Macnamara (email available below). General contact details of provider: https://edirc.repec.org/data/semanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.