IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/54527.html
   My bibliography  Save this paper

Theory and Applications of TAR Model with Two Threshold Variables

Author

Listed:
  • Chen, Haiqiang
  • Chong, Terence Tai Leung
  • Bai, Jushan

Abstract

A growing body of threshold models has been developed over the past two decades to capture the nonlinear movement of financial time series. Most of these models, however, contain a single threshold variable only. In many empirical applications, models with two or more threshold variables are needed. This paper develops a new threshold autoregressive model which contains two threshold variables. A likelihood ratio test is proposed to determine the number of regimes in the model. The finite-sample performance of the estimators is evaluated and an empirical application is provided.

Suggested Citation

  • Chen, Haiqiang & Chong, Terence Tai Leung & Bai, Jushan, 2012. "Theory and Applications of TAR Model with Two Threshold Variables," MPRA Paper 54527, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54527
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/54527/1/MPRA_paper_54527.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chong, Terence Tai-Leung, 2001. "Structural Change In Ar(1) Models," Econometric Theory, Cambridge University Press, vol. 17(1), pages 87-155, February.
    2. Jushan Bai & Haiqiang Chen & Terence Tai-Leung Chong & Seraph Xin Wang, 2008. "Generic consistency of the break-point estimators under specification errors in a multiple-break model," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 287-307, July.
    3. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    4. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    5. Frankel, Jeffrey A & Rose, Andrew K, 1996. "Currency Crashes in Emerging Markets: Empirical Indicators," CEPR Discussion Papers 1349, C.E.P.R. Discussion Papers.
    6. Durlauf, Steven N & Johnson, Paul A, 1995. "Multiple Regimes and Cross-Country Growth Behaviour," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 365-384, Oct.-Dec..
    7. Leeper, Eric M., 1991. "Equilibria under 'active' and 'passive' monetary and fiscal policies," Journal of Monetary Economics, Elsevier, vol. 27(1), pages 129-147, February.
    8. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    9. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    10. Jeffrey D. Sachs & Aaron Tornell & Andrés Velasco, 1996. "Financial Crises in Emerging Markets: The Lessons from 1995," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(1), pages 147-216.
    11. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    12. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    13. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    14. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    15. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    16. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "Liquidity and Autocorrelations in Individual Stock Returns," Journal of Finance, American Finance Association, vol. 61(5), pages 2365-2394, October.
    17. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    18. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    19. Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
    20. Foster, F Douglas & Viswanathan, S, 1995. "Can Speculative Trading Explain the Volume-Volatility Relation?," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 379-396, October.
    21. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    22. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    23. Charles M.C. Lee & Bhaskaran Swaminathan, 2000. "Price Momentum and Trading Volume," Journal of Finance, American Finance Association, vol. 55(5), pages 2017-2069, October.
    24. Astatkie, T. & Watts, D. G. & Watt, W. E., 1997. "Nested threshold autoregressive (NeTAR) models," International Journal of Forecasting, Elsevier, vol. 13(1), pages 105-116, March.
    25. Terence Tai-Leung Chong, 2003. "Generic consistency of the break-point estimator under specification errors," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 167-192, June.
    26. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    27. Brennan, Michael J. & Chordia, Tarun & Subrahmanyam, Avanidhar, 1998. "Alternative factor specifications, security characteristics, and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 49(3), pages 345-373, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Stefan Avdjiev & Zheng Zeng, 2014. "Credit growth, monetary policy and economic activity in a three-regime TVAR model," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2936-2951, August.
    3. Chong Terence Tai-Leung & Chen Haiqiang & Wong Tsz-Nga & Yan Isabel Kit-Ming, 2018. "Estimation and inference of threshold regression models with measurement errors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-16, April.
    4. Chong, Terence Tai-Leung & Lam, Tau-Hing & Yan, Isabel Kit-Ming, 2012. "Is the Chinese stock market really inefficient?," China Economic Review, Elsevier, vol. 23(1), pages 122-137.
    5. Arturo Lamadrid-Contreras & N.R. Ramírez-Rondán, 2018. "Panel Models with Two Threshold Variables: The Case of Financial Constraints," Working Papers 128, Peruvian Economic Association.
    6. Xiaobing Zheng & Kun Liang & Qiang Xia & Dabin Zhang, 2022. "Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1175-1201, March.
    7. Haiqiang Chen & Terence Tai Leung Chong & Yingni She, 2014. "A principal component approach to measuring investor sentiment in China," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 573-579, April.
    8. Klingelhöfer, Jan & Sun, Rongrong, 2018. "China's regime-switching monetary policy," Economic Modelling, Elsevier, vol. 68(C), pages 32-40.
    9. Ni Shuxia & Xia Qiang & Liu Jinshan, 2018. "Bayesian Subset Selection for Two-Threshold Variable Autoregressive Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-16, September.
    10. Zhang, Xinyu & Li, Dong & Tong, Howell, 2023. "On the least squares estimation of multiple-threshold-variable autoregressive models," LSE Research Online Documents on Economics 118377, London School of Economics and Political Science, LSE Library.
    11. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    12. repec:wyi:journl:002214 is not listed on IDEAS
    13. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    14. Chong, Terence Tai Leung & Yan, Isabel K., 2014. "Estimating and Testing Threshold Regression Models with Multiple Threshold Variables," MPRA Paper 54732, University Library of Munich, Germany.
    15. Eugene Msizi Buthelezi & Phocenah Nyatanga, 2023. "Threshold of the CAPB That Can Be Attributed to Fiscal Consolidation Episodes in South Africa," Economies, MDPI, vol. 11(6), pages 1-26, May.
    16. Apergis, Nicholas & Eleftheriou, Sofia, 2016. "Gold returns: Do business cycle asymmetries matter? Evidence from an international country sample," Economic Modelling, Elsevier, vol. 57(C), pages 164-170.
    17. Aye, Goodness C. & Kotur, Lydia N. & Ayoola, Josephine B., 2024. "Beyond the threshold: Unraveling the effects of economic policy uncertainty on agricultural growth in Nigeria," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344261, International Association of Agricultural Economists (IAAE).
    18. Terence T.L. Chong & Isabel K. Yan, 2018. "Forecasting currency crises with threshold models," International Economics, CEPII research center, issue 156, pages 156-174.
    19. Donayre, Luiggi & Panovska, Irina, 2018. "U.S. wage growth and nonlinearities: The roles of inflation and unemployment," Economic Modelling, Elsevier, vol. 68(C), pages 273-292.
    20. Alogoskoufis, George & Malliaris, A.G. & Stengos, Thanasis, 2023. "The scope and methodology of economic and financial asymmetries," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    21. Monica Dudian & Mihaela Mosora & Cosmin Mosora & Stefanija Birova, 2017. "Oil Price and Economic Resilience. Romania’s Case," Sustainability, MDPI, vol. 9(2), pages 1-8, February.
    22. Jean-Marc Le Caillec, 2021. "Threshold autoregressive model blind identification based on array clustering," Post-Print hal-03210735, HAL.
    23. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002152 is not listed on IDEAS
    2. Chong, Terence Tai Leung & Yan, Isabel K., 2014. "Estimating and Testing Threshold Regression Models with Multiple Threshold Variables," MPRA Paper 54732, University Library of Munich, Germany.
    3. Chong Terence Tai-Leung & Chen Haiqiang & Wong Tsz-Nga & Yan Isabel Kit-Ming, 2018. "Estimation and inference of threshold regression models with measurement errors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-16, April.
    4. Chong Terence T. L. & He Qing & Hinich Melvin J, 2008. "The Nonlinear Dynamics of Foreign Reserves and Currency Crises," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-18, December.
    5. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    6. Chong, Terence T.L. & Yan, Isabel K., 2018. "Forecasting currency crises with threshold models," International Economics, Elsevier, vol. 156(C), pages 156-174.
    7. repec:wyi:journl:002203 is not listed on IDEAS
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    10. Chen, Haiqiang, 2015. "Robust Estimation And Inference For Threshold Models With Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 31(4), pages 778-810, August.
    11. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    12. repec:hum:wpaper:sfb649dp2013-034 is not listed on IDEAS
    13. Hendershott, Terrence & Seasholes, Mark S., 2014. "Liquidity provision and stock return predictability," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 140-151.
    14. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    15. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    16. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    17. Gagnon, Louis & Karolyi, G. Andrew, 2009. "Information, Trading Volume, and International Stock Return Comovements: Evidence from Cross-Listed Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(4), pages 953-986, August.
    18. Sanjiv Das & Paul Hanouna, 2010. "Run lengths and liquidity," Annals of Operations Research, Springer, vol. 176(1), pages 127-152, April.
    19. Roll, Richard & Schwartz, Eduardo & Subrahmanyam, Avanidhar, 2014. "Trading activity in the equity market and its contingent claims: An empirical investigation," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 13-35.
    20. Kirstin Hubrich & Timo Teräsvirta, 2013. "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Papers 2013-18, Department of Economics and Business Economics, Aarhus University.
    21. Kadilli, Anjeza, 2015. "Predictability of stock returns of financial companies and the role of investor sentiment: A multi-country analysis," Journal of Financial Stability, Elsevier, vol. 21(C), pages 26-45.
    22. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    23. Wang, Zijun & Qian, Yan & Wang, Shiwen, 2018. "Dynamic trading volume and stock return relation: Does it hold out of sample?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 195-210.

    More about this item

    Keywords

    Threshold Autoregressive Model; Misspecification; Likelihood Ratio Test; Bootstrapping.;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.