IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321009589.html
   My bibliography  Save this article

Competition between awareness and epidemic spreading in homogeneous networks with demography

Author

Listed:
  • Peng, Xiao-Long
  • Li, Chun-Yan
  • Qi, Hong
  • Sun, Gui-Quan
  • Wang, Zhen
  • Wu, Yong-Ping

Abstract

Although a major effort has been made in the study of the coupled dynamics of disease and awareness spreading on multiplex networks, the full understanding of their dynamical interactions is still lacking. To address this issue, in this paper we investigate a simple model for the competition between disease and awareness processes in a homogeneous network with natural birth and death processes. We show that the natural death process has no impact on the competiting dynamics between the epidemic and awareness spreading processes, while the birth process exerts siginificant impacts on the model dynamical behavior. In particular, there exists a threshold value of the population birth rate that distinguishes the model dynamics from a simple susceptible-infected-susceptible (SIS) dynamics to a nontrivial, intriguing competing dynamics between awareness and epidemic spreading. When the population birth rate is above the birth threshold, the pahse diagram of our model resembles that of the standard SIS model. That is, the system is always awareness-free, stabilizing at either a fully susceptible state (where neither epidemic nor awareness existes) or an awareness-free epidemic state (where awareness vanishes). However, when the population birth rate is below the birth thrshold, there emerges a tricritical point defined as a critical value of the awareness efficacy. When the awareness efficacy is below the tricritical point, there are two contiuous phase transitions, segregating an epidemic-free aware state (where epidemic vanishes) from an awareness-free epidemic state, with an intermediate hybrid state (where susceptible,infected, and aware individuals coexist in the population) interpolating between them. As the awareness efficacy reaches the tricritical point, the two continuous transitions disappear while a discontinuous transition emerges from the epidemic-free aware state to the awareness-free epidemic state. When the awareness efficacy exceeds the tricritical point, the discontinuous transition split into two discontinuous ones, leading to a bistability regime where both the epidemic-free aware state and the awareness-free epidemic state are stable. The rich dynamics in our model highlights the intriguing competition between the awareness and epidemic spreading processes as well as its dependence on demographic changes. Our analytical results are supported by extensive stochastic simulations of the model on homogeneous random networks.

Suggested Citation

  • Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009589
    DOI: 10.1016/j.amc.2021.126875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian, Qing & Li, Xiaopeng & Wang, Juan & Xia, Chengyi, 2021. "Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Alam, Muntasir & Kuga, Kazuki & Tanimoto, Jun, 2019. "Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 408-422.
    3. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
    4. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    5. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    6. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Guilherme S. & Cota, Wesley & Ferreira, Silvio C., 2022. "Data-driven approach in a compartmental epidemic model to assess undocumented infections," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    6. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    7. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    8. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    9. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    10. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.