IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012263.html
   My bibliography  Save this article

Epidemiological modeling of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) reveals conditions for introduction and widespread transmission

Author

Listed:
  • Elias Rosenblatt
  • Jonathan D Cook
  • Graziella V DiRenzo
  • Evan H Campbell Grant
  • Fernando Arce
  • Kim M Pepin
  • F Javiera Rudolph
  • Michael C Runge
  • Susan Shriner
  • Daniel P Walsh
  • Brittany A Mosher

Abstract

Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.Author summary: Novel zoonotic diseases persist and evolve in both human and non-human hosts, posing challenges for human and animal health. SARS-CoV-2, the virus responsible for the COVID-19 pandemic in humans, has been detected in white-tailed deer (Odocoileus virginianus) yet we have limited understanding of its introduction and transmission within deer populations. Here, we use epidemiological models to describe SARS-CoV-2 introduction and transmission patterns within wild and captive white-tailed deer populations. We found that captive deer herds faced a higher risk of spillover of SARS-CoV-2 from humans and higher transmission rate compared to wild deer. Despite these differences in wild and captive contexts, we found that transmission in both wild and captive contexts often resulted in persisting circulation of SARS-CoV-2. This circulation was determined by deer-deer transmission in both wild and captive contexts, rather than by high rates of introduction from humans. Outbreaks in wild populations were greater when these animals could interact with captive deer populations circulating SARS-CoV-2. SARS-CoV-2 appears to circulate in both captive and wild deer across a range of circumstances. Our findings help to inform how to best mitigate the introduction and spread of SARS-CoV-2 in deer, with benefits to protecting human health.

Suggested Citation

  • Elias Rosenblatt & Jonathan D Cook & Graziella V DiRenzo & Evan H Campbell Grant & Fernando Arce & Kim M Pepin & F Javiera Rudolph & Michael C Runge & Susan Shriner & Daniel P Walsh & Brittany A Moshe, 2024. "Epidemiological modeling of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) reveals conditions for introduction and widespread transmission," PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-27, July.
  • Handle: RePEc:plo:pcbi00:1012263
    DOI: 10.1371/journal.pcbi.1012263
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012263
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012263&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    9. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    10. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    11. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    12. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    13. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    14. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    15. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.