IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001493.html
   My bibliography  Save this article

The recurrence of groups inhibits the information spreading under higher-order interactions

Author

Listed:
  • Yuan, Liang
  • Wu, Jiao
  • Xu, Kesheng
  • Zheng, Muhua

Abstract

Modeling social systems as networks based on pairwise interactions between individuals offers valuable insights into the mechanisms underlying their dynamics. However, the majority of social interactions occur within groups of individuals, characterized by higher-order structures. The mechanisms driving group formation and the impact of higher-order interactions, which arise from group dynamics, on information spreading in face-to-face interaction networks remain insufficiently understood. In this study, we examine some representative human face-to-face interaction data and find the recurrent patterns of groups. Moreover, we extend the force-directed motion (FDM) model with the forces derived from similarity distances within a hidden space to reproduce the recurrent group patterns and many key properties of face-to-face interaction networks. Furthermore, we demonstrate that the FDM model effectively predicts information-spreading behaviors under higher-order interactions. Finally, our results reveal that the recurrence of triangular groups inhibits the spread of information in face-to-face interaction networks, and the higher-order interactions will make this phenomenon more pronounced. These findings represent a significant advancement in the understanding of group formation and may open new avenues for research into the effects of group interactions on information propagation processes.

Suggested Citation

  • Yuan, Liang & Wu, Jiao & Xu, Kesheng & Zheng, Muhua, 2025. "The recurrence of groups inhibits the information spreading under higher-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001493
    DOI: 10.1016/j.chaos.2025.116136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:plo:pone00:0136497 is not listed on IDEAS
    2. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    3. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    5. Iacopo Iacopini & Márton Karsai & Alain Barrat, 2024. "The temporal dynamics of group interactions in higher-order social networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Alessandro Vespignani, 2018. "Twenty years of network science," Nature, Nature, vol. 558(7711), pages 528-529, June.
    7. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    8. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    9. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iacopo Iacopini & Márton Karsai & Alain Barrat, 2024. "The temporal dynamics of group interactions in higher-order social networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    3. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    8. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    9. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    10. Zhang, Zehui & Zhu, Kangci & Wang, Fang, 2025. "Indirect information propagation model with time-delay effect on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    11. Fang, Fanshu & Ma, Jing & Ma, Yin-Jie & Boccaletti, Stefano, 2024. "Social contagion on higher-order networks: The effect of relationship strengths," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    12. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Zhang, Ke & Gao, Jingyu & Zhao, Haixing & Hu, Wenjun & Miao, Minmin & Zhang, Zi-Ke, 2025. "Uniform transformation and collective degree analysis on higher-order networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    14. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    15. Lamata-Otín, Santiago & Reyna-Lara, Adriana & Gómez-Gardeñes, Jesús, 2024. "Integrating Virtual and Physical Interactions through higher-order networks to control epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    16. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    18. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    19. Costa, Guilherme S. & Novaes, Marcel & de Aguiar, Marcus A.M., 2025. "Exact solutions of the Kuramoto model with asymmetric higher order interactions of arbitrary order," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    20. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.