IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v412y2022ics0096300321006792.html
   My bibliography  Save this article

Competing spreading dynamics in simplicial complex

Author

Listed:
  • Li, WenYao
  • Xue, Xiaoyu
  • Pan, Liming
  • Lin, Tao
  • Wang, Wei

Abstract

Interactions in biology and social systems are not restricted to pairwise but can take arbitrary sizes. Extensive studies have revealed that the arbitrary-sized interactions significantly affect the spreading dynamics on networked systems. Competing spreading dynamics, i.e., several epidemics spread simultaneously and compete with each other, have been widely observed in the real world, yet the way arbitrary-sized interactions affect competing spreading dynamics still lacks systematic study. This study presents a model of two competing simplicial susceptible-infected-susceptible epidemics on a higher-order system represented by simplicial complex and analyzes the model’s critical phenomena. In the proposed model, a susceptible node can only be infected by one of the two epidemics, and the transmission of infection to neighbors can occur through pairwise (i.e., an edge) and higher-order (e.g., 2-simplex) interactions simultaneously. Through a mean-field (MF) theory analysis and numerical simulations, we show that the model displays rich dynamical behavior depending on the 2-simplex infection strength. When the 2-simplex infection strength is weak, the model’s phase diagram is consistent with the simple graph, consisting of three regions: the absolute dominant regions for each epidemic and the epidemic-free region. With the increase of the 2-simplex infection strength, a new phase region called the alternative dominant region emerges. In this region, the survival of one epidemic depends on the initial conditions. Our theoretical analysis can reasonably predict the time evolution and steady-state outbreak size in each region. In addition, we further explore the model’s phase diagram both when the 2-simplex infection strength is symmetrical and asymmetrical. The results show that the 2-simplex infection strength has a significant impact on the system phase diagram.

Suggested Citation

  • Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
  • Handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006792
    DOI: 10.1016/j.amc.2021.126595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pradeep Dubey & Rahul Garg & Bernard De Meyer, 2006. "Competing for Customers in a Social Network," Cowles Foundation Discussion Papers 1591, Cowles Foundation for Research in Economics, Yale University.
    2. Riccardo Gallotti & Francesco Valle & Nicola Castaldo & Pierluigi Sacco & Manlio De Domenico, 2020. "Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics," Nature Human Behaviour, Nature, vol. 4(12), pages 1285-1293, December.
    3. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    4. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    5. Bernard de Meyer & Pradeep K. Dubey & Rahul Garg, 2006. "Competing for Customers in a Social Network: The Quasi-linear Case," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00367866, HAL.
    6. M E J Newman & Carrie R Ferrario, 2013. "Interacting Epidemics and Coinfection on Contact Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    7. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    8. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    9. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    10. Rehman, Attiq ul & Singh, Ram & Agarwal, Praveen, 2021. "Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    12. Bjarke Mønsted & Piotr Sapieżyński & Emilio Ferrara & Sune Lehmann, 2017. "Evidence of complex contagion of information in social media: An experiment using Twitter bots," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-12, September.
    13. Feng Hu & Lin Ma & Xiu-Xiu Zhan & Yinzuo Zhou & Chuang Liu & Haixing Zhao & Zi-Ke Zhang, 2021. "The aging effect in evolving scientific citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4297-4309, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Maoxing & Ren, Xuejie & Peng, Yu & Sun, Yongzheng, 2024. "The dynamical analysis of simplicial SAIS epidemic model with awareness programs by media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    2. Lv, Xijian & Fan, Dongmei & Yang, Junxian & Li, Qiang & Zhou, Li, 2024. "Delay differential equation modeling of social contagion with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    5. Huang, He & Pan, Jialin & Chen, Yahong, 2024. "The competitive diffusion of knowledge and rumor in a multiplex network: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    6. Alexandru Topîrceanu, 2023. "On the Impact of Quarantine Policies and Recurrence Rate in Epidemic Spreading Using a Spatial Agent-Based Model," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    7. Li, Tianyu & Wu, Yong & Ding, Qianming & Xie, Ying & Yu, Dong & Yang, Lijian & Jia, Ya, 2024. "Social contagion in high-order network with mutation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Gómez-Corral, A. & Lopez-Herrero, M.J. & Taipe, D., 2023. "A Markovian epidemic model in a resource-limited environment," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    9. Ma, Jinlong & Wang, Peng, 2024. "Impact of community networks with higher-order interaction on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Li, Shumei & Yang, Chun & Yao, Zhiwen, 2024. "Simplicial epidemic model with individual resource," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    11. Alexandru Topîrceanu, 2024. "A Spatial Agent-Based Model for Studying the Effect of Human Mobility Patterns on Epidemic Outbreaks in Urban Areas," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
    12. Li, Xueqi & Ghosh, Dibakar & Lei, Youming, 2023. "Chimera states in coupled pendulum with higher-order interaction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    15. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    16. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    18. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    20. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    21. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    2. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    3. Nicole Tabasso, 2014. "Diffusion of Multiple Information," School of Economics Discussion Papers 0914, School of Economics, University of Surrey.
    4. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    5. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Goyal, Sanjeev & Heidari, Hoda & Kearns, Michael, 2019. "Competitive contagion in networks," Games and Economic Behavior, Elsevier, vol. 113(C), pages 58-79.
    7. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    9. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    11. Pradeep Dubey & Rahul Garg & Bernard De Meyer, 2006. "Competing for Customers in a Social Network," Cowles Foundation Discussion Papers 1591, Cowles Foundation for Research in Economics, Yale University.
    12. Tabasso, Nicole, 2019. "Diffusion of multiple information: On information resilience and the power of segregation," Games and Economic Behavior, Elsevier, vol. 118(C), pages 219-240.
    13. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Fang, Fanshu & Ma, Jing & Ma, Yin-Jie & Boccaletti, Stefano, 2024. "Social contagion on higher-order networks: The effect of relationship strengths," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    16. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    18. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.