IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp408-422.html
   My bibliography  Save this article

Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure

Author

Listed:
  • Alam, Muntasir
  • Kuga, Kazuki
  • Tanimoto, Jun

Abstract

We build a new analytic scheme that competently reproduces the decision-making process of choosing an imperfect provision based on the evolutionary game theory dovetailed with the SIR model for epidemic spreading dynamics. Aside from considering the two extreme options whether or not taking vaccination, we consider an ‘intermediate defense measure’ (IDM) that emulates hand-washing, masking, gargling, and taking energy drinks, defined as the third strategy while taking vaccination as well as IDM at the same time as the fourth strategy. In the present study, each of the proposed three imperfect provisions is able to oppress infectious diseases like Flu, Influenza, Ebola, and SARS during an epidemic season with certain extent. Considering an infinite and well-mixed population, a new analytic framework is built to take care of those three cases instead of perfect vaccination. Unlike MAS (multi-agent simulation) approach we conduct our study throughout using the so-called theoretical approach. Besides that, three different strategy updating rules based on evolutionary game theory have also been considered in our proposed model. We successfully obtain phase diagrams showing the final epidemic size, social average payoff and the respective fractions of the different strategy holders using various values of effectiveness and efficiency coefficients. Finally, a comprehensive discussion is made with comparison among the two-, three- and four- strategy models to get a holistic idea justifying how imperfect provisions work during an epidemic spreading.

Suggested Citation

  • Alam, Muntasir & Kuga, Kazuki & Tanimoto, Jun, 2019. "Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 408-422.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:408-422
    DOI: 10.1016/j.amc.2018.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Haifeng & Fu, Feng & Zhang, Wenyao & Wang, Binghong, 2012. "Rational behavior is a ‘double-edged sword’ when considering voluntary vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4807-4815.
    2. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    3. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "Individuals with the firm heart are conducive to cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Ito, Hiromu & Yamamoto, Taro & Morita, Satoru, 2019. "Demography of sexually transmitted infections with vertical transmission," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 363-370.
    4. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    5. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    6. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. You, Tao & Wang, Peng & Jia, Danyang & Yang, Fei & Cui, Xiaodong & Liu, Chen, 2020. "The effects of heterogeneity of updating rules on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Wang, Chaoqian & Pan, Qiuhui & Ju, Xinxiang & He, Mingfeng, 2021. "Public goods game with the interdependence of different cooperative strategies," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Tian, Yong & Ding, Xuejun, 2019. "Rumor spreading model with considering debunking behavior in emergencies," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    10. Li, Cong & Xu, Hedong & Fan, Suohai, 2021. "Evolutionary compromise game on assortative mixing networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    12. Wang, Chaoqian & Huang, Chaochao & Pan, Qiuhui & He, Mingfeng, 2022. "Modeling the social dilemma of involution on a square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    14. Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    15. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Quan, Ji & Yang, Wenjun & Li, Xia & Wang, Xianjia & Yang, Jian-Bo, 2020. "Social exclusion with dynamic cost on the evolution of cooperation in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    18. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    21. Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    22. Li, Wen-Jing & Jiang, Luo-Luo & Perc, Matjaž, 2021. "A limited mobility of minorities facilitates cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 391(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Sheryl Le Chang & Mahendra Piraveenan & Mikhail Prokopenko, 2019. "The Effects of Imitation Dynamics on Vaccination Behaviours in SIR-Network Model," IJERPH, MDPI, vol. 16(14), pages 1-31, July.
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    4. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Kejriwal, Saransh & Sheth, Sarjan & Silpa, P.S. & Sarkar, Sumit & Guha, Apratim, 2022. "Attaining herd immunity to a new infectious disease through multi-stage policies incentivising voluntary vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    7. Soya Miyoshi & Marko Jusup & Petter Holme, 2021. "Flexible imitation suppresses epidemics through better vaccination," Journal of Computational Social Science, Springer, vol. 4(2), pages 709-720, November.
    8. Ruguo Fan & Yibo Wang & Jinchai Lin, 2021. "Study on Multi-Agent Evolutionary Game of Emergency Management of Public Health Emergencies Based on Dynamic Rewards and Punishments," IJERPH, MDPI, vol. 18(16), pages 1-22, August.
    9. Hui Yan & Haixiang Wei & Min Wei, 2021. "Exploring Tourism Recovery in the Post-COVID-19 Period: An Evolutionary Game Theory Approach," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    10. Zhang, Hong, 2022. "Effects of stubborn players and noise on the evolution of cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Lin, Ying-Ting & Han, Xiao-Pu & Wang, Bing-Hong, 2014. "Dynamics of human innovative behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 74-81.
    13. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    14. Han, Dun & Sun, Mei & Li, Dandan, 2015. "Epidemic process on activity-driven modular networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 354-362.
    15. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    17. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    18. Shi, Benyun & Liu, Guangliang & Qiu, Hongjun & Wang, Zhen & Ren, Yizhi & Chen, Dan, 2019. "Exploring voluntary vaccination with bounded rationality through reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 171-182.
    19. Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
    20. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:408-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.