IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001959.html
   My bibliography  Save this article

Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic

Author

Listed:
  • Meng, Xueyu
  • Lin, Jianhong
  • Fan, Yufei
  • Gao, Fujuan
  • Fenoaltea, Enrico Maria
  • Cai, Zhiqiang
  • Si, Shubin

Abstract

Predicting the evolutionary dynamics of the COVID-19 pandemic is a complex challenge. The complexity increases when the vaccination process dynamic is also considered. In addition, when applying a voluntary vaccination policy, the simultaneous behavioral evolution of individuals who decide whether and when to vaccinate must be included. In this paper, a coupled disease-vaccination behavior dynamic model is introduced to study the coevolution of individual vaccination strategies and infection spreading. We study disease transmission by a mean-field compartment model and introduce a non-linear infection rate that takes into account the simultaneity of interactions. Besides, the evolutionary game theory is used to investigate the contemporary evolution of vaccination strategies. Our findings suggest that sharing information with the entire population about the negative and positive consequences of infection and vaccination is beneficial as it boosts behaviors that can reduce the final epidemic size. Finally, we validate our transmission mechanism on real data from the COVID-19 pandemic in France.

Suggested Citation

  • Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001959
    DOI: 10.1016/j.chaos.2023.113294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Peican & Wang, Xing & Zhi, Qiang & Ma, Jiezhong & Guo, Yangming, 2018. "Analysis of epidemic spreading process in multi-communities," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 231-237.
    2. Gabrick, Enrique C. & Protachevicz, Paulo R. & Batista, Antonio M. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Szezech, José D. & Mugnaine, Michele & Caldas, Iberê L., 2022. "Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Tatsukawa, Yuichi & Arefin, Md. Rajib & Utsumi, Shinobu & Kuga, Kazuki & Tanimoto, Jun, 2022. "Stochasticity of disease spreading derived from the microscopic simulation approach for various physical contact networks," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    4. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Tori, Risa & Tanimoto, Jun, 2022. "A study on prosocial behavior of wearing a mask and self-quarantining to prevent the spread of diseases underpinned by evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    7. Francisco Arroyo-Marioli & Francisco Bullano & Simas Kucinskas & Carlos Rondón-Moreno, 2021. "Tracking R of COVID-19: A new real-time estimation using the Kalman filter," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    8. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Buldú, Javier M. & Antequera, Daniel R. & Aguirre, Jacobo, 2020. "The resumption of sports competitions after COVID-19 lockdown: The case of the Spanish football league," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    11. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    12. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    14. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    16. Shi, Benyun & Liu, Guangliang & Qiu, Hongjun & Wang, Zhen & Ren, Yizhi & Chen, Dan, 2019. "Exploring voluntary vaccination with bounded rationality through reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 171-182.
    17. Isabella Locatelli & Bastien Trächsel & Valentin Rousson, 2021. "Estimating the basic reproduction number for COVID-19 in Western Europe," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-9, March.
    18. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Edouard Mathieu & Hannah Ritchie & Esteban Ortiz-Ospina & Max Roser & Joe Hasell & Cameron Appel & Charlie Giattino & Lucas Rodés-Guirao, 2021. "A global database of COVID-19 vaccinations," Nature Human Behaviour, Nature, vol. 5(7), pages 947-953, July.
    20. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    21. Annas, Suwardi & Isbar Pratama, Muh. & Rifandi, Muh. & Sanusi, Wahidah & Side, Syafruddin, 2020. "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    22. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    23. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    24. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    25. Miyaji, Kohei & Tanimoto, Jun, 2021. "The existence of fence-sitters relaxes the spatial prisoner’s dilemma and enhances network reciprocity," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    26. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    27. João Viana & Christiaan H. Dorp & Ana Nunes & Manuel C. Gomes & Michiel Boven & Mirjam E. Kretzschmar & Marc Veldhoen & Ganna Rozhnova, 2021. "Controlling the pandemic during the SARS-CoV-2 vaccination rollout," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    28. Ahsan Habib, Md. & Tanaka, Masaki & Tanimoto, Jun, 2020. "How does conformity promote the enhancement of cooperation in the network reciprocity in spatial prisoner's dilemma games?," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    29. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    30. Jia, Danyang & Li, Tong & Zhao, Yang & Zhang, Xiaoqin & Wang, Zhen, 2022. "Empty nodes affect conditional cooperation under reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    31. Yanyi Nie & Liming Pan & Tao Lin & Wei Wang, 2022. "Information spreading on metapopulation networks with heterogeneous contacting," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-13, March.
    32. Kokurin, M.M. & Kokurin, M.Yu. & Semenova, A.V., 2022. "Iteratively regularized Gauss–Newton type methods for approximating quasi–solutions of irregular nonlinear operator equations in Hilbert space with an application to COVID–19 epidemic dynamics," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    33. Zou, R. & Deng, Z. & Lu, Y. & Hu, J. & Han, Z., 2021. "Study of spreading phenomenon in network population considering heterogeneous property," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    34. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    5. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    7. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    10. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    12. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    13. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    16. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    19. Huang, He & Xu, Yang & Xing, Jingli & Shi, Tianyu, 2023. "Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.