IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v447y2023ics0096300323000747.html
   My bibliography  Save this article

Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis

Author

Listed:
  • Zuo, Chao
  • Ling, Yuting
  • Zhu, Fenping
  • Ma, Xinyu
  • Xiang, Guochun

Abstract

A complex dynamic interplay exists between epidemic transmission and vaccination, which is significantly influenced by human behavioral responses. We construct a research framework combining both the function modeling of the cumulative global COVID-19 information and limited individuals’ information processing capacity employing the Gompertz model for growing processes. Meanwhile, we built a function representing the decision to get vaccinated following benefit-cost analysis considered the choices made by people in each scenario have an influence from altruism, free-riding and immunity escaping capacity. Through the mean-field calculation analysis and using a fourth-order Runge-Kutta method with constant step size, we obtain plots from numerical simulations.

Suggested Citation

  • Zuo, Chao & Ling, Yuting & Zhu, Fenping & Ma, Xinyu & Xiang, Guochun, 2023. "Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis," Applied Mathematics and Computation, Elsevier, vol. 447(C).
  • Handle: RePEc:eee:apmaco:v:447:y:2023:i:c:s0096300323000747
    DOI: 10.1016/j.amc.2023.127905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixia Zuo & Maoxing Liu & Jinqiang Wang, 2015. "The Impact of Awareness Programs with Recruitment and Delay on the Spread of an Epidemic," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, March.
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Bin Wu & Feng Fu & Long Wang, 2011. "Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    4. Chao Zuo & Anjing Wang & Fenping Zhu & Zeyang Meng & Xueke Zhao & xiaoke xu, 2021. "A New Coupled Awareness-Epidemic Spreading Model with Neighbor Behavior on Multiplex Networks," Complexity, Hindawi, vol. 2021, pages 1-14, March.
    5. Juan Manuel Carreño & Hala Alshammary & Johnstone Tcheou & Gagandeep Singh & Ariel J. Raskin & Hisaaki Kawabata & Levy A. Sominsky & Jordan J. Clark & Daniel C. Adelsberg & Dominika A. Bielak & Ana Si, 2022. "Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron," Nature, Nature, vol. 602(7898), pages 682-688, February.
    6. Anupama Sharma & Shakti N Menon & V Sasidevan & Sitabhra Sinha, 2019. "Epidemic prevalence information on social networks can mediate emergent collective outcomes in voluntary vaccine schemes," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.
    7. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    8. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Jinyan Liu & Abishek Chandrashekar & Daniel Sellers & Julia Barrett & Catherine Jacob-Dolan & Michelle Lifton & Katherine McMahan & Michaela Sciacca & Haley VanWyk & Cindy Wu & Jingyou Yu & Ai-ris Y. , 2022. "Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron," Nature, Nature, vol. 603(7901), pages 493-496, March.
    10. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    11. Shakhany, Mohammad Qaleh & Salimifard, Khodakaram, 2021. "Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    13. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Maoxing Liu & Yuting Chang & Lixia Zuo, 2016. "Modelling the Impact of Media in Controlling the Diseases with a Piecewise Transmission Rate," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xueli & Zhang, Suxia, 2024. "Coupling media coverage and susceptibility for modeling epidemic dynamics: An application to COVID-19," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 374-394.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    2. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    6. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Li, Ling & Dong, Gaogao & Zhu, Huaiping & Tian, Lixin, 2024. "Impact of multiple doses of vaccination on epidemiological spread in multiple networks," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    8. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    9. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    10. Jiang, Jiehui & Ma, Jie, 2023. "Dynamic analysis of pandemic cross-regional transmission considering quarantine strategies in the context of limited medical resources," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    11. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    12. Guo, Yifei & Tu, Lilan & Wang, Xianjia, 2024. "The coupled dynamics of awareness and disease: Based on the adaptive mechanism and the surroundings reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    13. Xie, Meiling & Zeng, Ziyan & Li, Yuhan & Feng, Minyu, 2024. "Adherence strategy based on evolutionary games in epidemic spreading," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    14. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    15. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Wang, Yichao & Tu, Lilan & Wang, Xianjia & Guo, Yifei, 2024. "Evolutionary vaccination game considering intra-seasonal strategy shifts regarding multi-seasonal epidemic spreading," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    19. Zhang, Rongping & Liu, Maoxing & Xie, Boli, 2022. "The analysis of discrete-time epidemic model on networks with protective measures on game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:447:y:2023:i:c:s0096300323000747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.