IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v450y2023ics0096300323001273.html
   My bibliography  Save this article

Dynamic analysis of pandemic cross-regional transmission considering quarantine strategies in the context of limited medical resources

Author

Listed:
  • Jiang, Jiehui
  • Ma, Jie

Abstract

This work aims to quantitatively analyze the effect of quarantine strategies on controlling the spread of the pandemic in multiple regions under limited medical resources. First, a multi-regional discrete-time susceptible-infected-quarantined -recovered (SIQR) pandemic model considering intra-regional and inter-regional quarantine strategies is proposed. The basic reproduction number of the model is derived and shown to be a non-increasing function of the quarantine control parameters. Due to the limited medical resources, a multi-period model of resource allocation coupled with quarantine control is developed. Numerical results demonstrate that quarantine strategies reduce the speed and size of pandemic spreading. In the context of limited medical resources, intra-regional control is less effective at reducing infected individuals than inter-regional control, and most of the resources are allocated to high-risk regions.

Suggested Citation

  • Jiang, Jiehui & Ma, Jie, 2023. "Dynamic analysis of pandemic cross-regional transmission considering quarantine strategies in the context of limited medical resources," Applied Mathematics and Computation, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001273
    DOI: 10.1016/j.amc.2023.127958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keogh-Brown, Marcus Richard & Smith, Richard David, 2008. "The economic impact of SARS: How does the reality match the predictions?," Health Policy, Elsevier, vol. 88(1), pages 110-120, October.
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Julien Arino & P. van den Driessche, 2003. "A multi-city epidemic model," Mathematical Population Studies, Taylor & Francis Journals, vol. 10(3), pages 175-193.
    4. Oum, Tae Hoon & Wang, Kun, 2020. "Socially optimal lockdown and travel restrictions for fighting communicable virus including COVID-19," Transport Policy, Elsevier, vol. 96(C), pages 94-100.
    5. Yusen Ye & Wen Jiao & Hong Yan, 2020. "Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 807-832, April.
    6. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2019. "Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    8. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    9. Qian, Xinwu & Ukkusuri, Satish V., 2021. "Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 185-211.
    10. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    11. Martínez-Guerra, Rafael & Flores-Flores, Juan Pablo, 2021. "An algorithm for the robust estimation of the COVID-19 pandemic’s population by considering undetected individuals," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    12. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    13. Zhu, Xuzhen & Liu, Yuxin & Wang, Shengfeng & Wang, Ruijie & Chen, Xiaolong & Wang, Wei, 2021. "Allocating resources for epidemic spreading on metapopulation networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Corral, A. & Lopez-Herrero, M.J. & Taipe, D., 2023. "A Markovian epidemic model in a resource-limited environment," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    2. Nie, Qifan & Qian, Xinwu & Guo, Shuocheng & Jones, Steven & Doustmohammadi, Mehrnaz & Anderson, Michael D., 2022. "Impact of COVID-19 on paratransit operators and riders: A case study of central Alabama," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 48-67.
    3. Liu, Shasha & Yamamoto, Toshiyuki, 2022. "Role of stay-at-home requests and travel restrictions in preventing the spread of COVID-19 in Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 1-16.
    4. Zuo, Chao & Ling, Yuting & Zhu, Fenping & Ma, Xinyu & Xiang, Guochun, 2023. "Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    5. Zheng, Hongyu & Zhang, Kenan & Nie, Yu (Marco), 2021. "Plunge and rebound of a taxi market through COVID-19 lockdown: Lessons learned from Shenzhen, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 349-366.
    6. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    7. Marc Jim Mariano & George Verikios, 2022. "Understanding the Effects of Coronavirus on Australian Households: A Macro–Micro Analysis," Economic Papers, The Economic Society of Australia, vol. 41(3), pages 215-231, September.
    8. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    9. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    10. Verikios, George & Sullivan, Maura & Stojanovski, Pane & Giesecke, James & Woo, Gordon, 2011. "The Global Economic Effects of Pandemic Influenza," Conference papers 332033, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Hongfang Han & Yanhong Qian, 2021. "Did Enterprises' Innovation Ability Increase During the COVID-19 Pandemic? Evidence From Chinese Listed Companies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 1(3), pages 1-5.
    12. Anirudh Shingal & Prachi Agarwal, 2020. "How did trade in GVC-based products respond to previous health shocks? Lessons for COVID-19," RSCAS Working Papers 2020/68, European University Institute.
    13. Elise Blandenier & Zahra Habibi & Timokleia Kousi & Paolo Sestito & Antoine Flahault & Liudmila Rozanova, 2020. "Initial COVID-19 Outbreak: An Epidemiological and Socioeconomic Case Review of Iran," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
    14. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    15. Choi, Jong Hae, 2021. "Changes in airport operating procedures and implications for airport strategies post-COVID-19," Journal of Air Transport Management, Elsevier, vol. 94(C).
    16. Yaqi Wang & Rodrigo Viseu Cardoso & Claudiu Forgaci, 2022. "Urban Pandemic Vulnerability and COVID-19: A New Framework to Assess the Impacts of Global Pandemics in the Metropolitan Region of Amsterdam," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    17. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    18. Olli-Pekka Hilmola & Oskari Lähdeaho & Ville Henttu & Per Hilletofth, 2020. "Covid-19 Pandemic: Early Implications for North European Manufacturing and Logistics," Sustainability, MDPI, vol. 12(20), pages 1-13, October.
    19. Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    20. Amos Z. B. Flomo & Elissaios Papyrakis & Natascha Wagner, 2023. "Evaluating the economic effects of the Ebola virus disease in Liberia: A synthetic control approach," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(6), pages 1478-1504, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.