IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920310079.html
   My bibliography  Save this article

An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics

Author

Listed:
  • Amaral, Marco A.
  • Oliveira, Marcelo M. de
  • Javarone, Marco A.

Abstract

During pandemic events, strategies such as social distancing can be fundamental to reduce simultaneous infections and mitigate the disease spreading, which is very relevant to the risk of a healthcare system collapse. Although these strategies can be recommended, or even imposed, their actual implementation may depend on the population perception of the risks associated with a potential infection. The current COVID-19 crisis, for instance, is showing that some individuals are much more prone than others to remain isolated. To better understand these dynamics, we propose an epidemiological SIR model that uses evolutionary game theory for combining in a single process social strategies, individual risk perception, and viral spreading. In particular, we consider a disease spreading through a population, whose agents can choose between self-isolation and a lifestyle careless of any epidemic risk. The strategy adoption is individual and depends on the perceived disease risk compared to the quarantine cost. The game payoff governs the strategy adoption, while the epidemic process governs the agent’s health state. At the same time, the infection rate depends on the agent’s strategy while the perceived disease risk depends on the fraction of infected agents. Our results show recurrent infection waves, which are usually seen in previous historic epidemic scenarios with voluntary quarantine. In particular, such waves re-occur as the population reduces disease awareness. Notably, the risk perception is found to be fundamental for controlling the magnitude of the infection peak, while the final infection size is mainly dictated by the infection rates. Low awareness leads to a single and strong infection peak, while a greater disease risk leads to shorter, although more frequent, peaks. The proposed model spontaneously captures relevant aspects of a pandemic event, highlighting the fundamental role of social strategies.

Suggested Citation

  • Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310079
    DOI: 10.1016/j.chaos.2020.110616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    2. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    3. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    4. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    5. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    6. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    7. Zhang, Xiaolei & Ma, Renjun & Wang, Lin, 2020. "Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2013. "Minority Games: Interacting agents in financial markets," OUP Catalogue, Oxford University Press, number 9780199686698, Decembrie.
    9. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Timothy C Reluga, 2010. "Game Theory of Social Distancing in Response to an Epidemic," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
    11. Lucas Wardil & Marco Antonio Amaral, 2017. "Cooperation in Public Goods Games: Stay, But Not for Too Long," Games, MDPI, vol. 8(3), pages 1-10, August.
    12. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    13. Askarizadeh, Mojgan & Tork Ladani, Behrouz & Manshaei, Mohammad Hossein, 2019. "An evolutionary game model for analysis of rumor propagation and control in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 21-39.
    14. Joung-Hun Lee & Yoh Iwasa & Ulf Dieckmann & Karl Sigmund, 2019. "Social evolution leads to persistent corruption," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(27), pages 13276-13281, July.
    15. Zhang, Xiyun & Ruan, Zhongyuan & Zheng, Muhua & Barzel, Baruch & Boccaletti, Stefano, 2020. "Epidemic spreading under infection-reduced-recovery," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    17. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    18. Tagliazucchi, E. & Balenzuela, P. & Travizano, M. & Mindlin, G.B. & Mininni, P.D., 2020. "Lessons from being challenged by COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    2. Xuezhen Xiong, 2022. "The Impact of Environmental Protection Requirements on the Development of Green Animal Husbandry: An Evolutionary Game between Local Governments and Breeding Companies," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    3. Jiang, Jiehui & Ma, Jie, 2023. "Dynamic analysis of pandemic cross-regional transmission considering quarantine strategies in the context of limited medical resources," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Zuo, Chao & Ling, Yuting & Zhu, Fenping & Ma, Xinyu & Xiang, Guochun, 2023. "Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    5. Zhang, Wei & Brandes, Ulrik, 2023. "Conformity versus credibility: A coupled rumor-belief model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    7. Wang, Jie & He, Ya-qun & Wang, Heng-guang & Wu, Ru-fei, 2023. "Low-carbon promotion of new energy vehicles: A quadrilateral evolutionary game," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhang, Qinchunxue & Shu, Lan & Jiang, Bichuan, 2023. "Moran process in evolutionary game dynamics with interval payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    10. Chica, Manuel & Hernández, Juan M. & Santos, Francisco C., 2022. "Cooperation dynamics under pandemic risks and heterogeneous economic interdependence," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Bowen Lu & Shangzhi Yue, 2022. "Analysis of the Evolutionary Game of Three Parties in Environmental Information Disclosure in Sustainability Reports of Listed Forestry Companies in China," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    12. Khan, Md. Mamun-Ur-Rashid & Arefin, Md. Rajib & Tanimoto, Jun, 2022. "Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    13. Shan, Haiyan & Pi, Wenjie, 2023. "Mitigating panic buying behavior in the epidemic: An evolutionary game perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    14. Li, Wen-Jing & Chen, Zhi & Wang, Jun & Jiang, Luo-Luo & Perc, Matjaž, 2023. "Social mobility and network reciprocity shape cooperation in collaborative networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Flores, Lucas S. & Amaral, Marco A. & Vainstein, Mendeli H. & Fernandes, Heitor C.M., 2022. "Cooperation in regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Zhang, Rongping & Liu, Maoxing & Xie, Boli, 2022. "The analysis of discrete-time epidemic model on networks with protective measures on game theory," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    3. Benjamin Patrick Evans & Mikhail Prokopenko, 2021. "Bounded rationality for relaxing best response and mutual consistency: The Quantal Hierarchy model of decision-making," Papers 2106.15844, arXiv.org, revised Mar 2023.
    4. Shubham Agarwal & Diptesh Ghosh & Anindya S. Chakrabarti, 2016. "Self-organization in a distributed coordination game through heuristic rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(12), pages 1-10, December.
    5. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    6. Kets, W. & Voorneveld, M., 2007. "Congestion, Equilibrium and Learning : The Minority Game," Other publications TiSEM 49539a1f-2921-4dd9-83a0-4, Tilburg University, School of Economics and Management.
    7. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    9. Xin-Jie Zhang & Yong Tang & Jason Xiong & Wei-Jia Wang & Yi-Cheng Zhang, 2018. "Dynamics of Cooperation in Minority Games in Alliance Networks," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    10. Tercieux, O.R.C. & Voorneveld, M., 2005. "The Cutting Power of Preparation," Other publications TiSEM 75173341-627f-4eb2-91f1-0, Tilburg University, School of Economics and Management.
    11. Ghosh, Diptesh & Chakrabarti, Anindya S., 2017. "Emergence of distributed coordination in the Kolkata Paise Restaurant problem with finite information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 16-24.
    12. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    13. Linde, Jona & Gietl, Daniel & Sonnemans, Joep & Tuinstra, Jan, 2023. "The effect of quantity and quality of information in strategy tournaments," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 305-323.
    14. Kiran Sharma & Anamika & Anindya S. Chakrabarti & Anirban Chakraborti & Sujoy Chakravarty, 2017. "The Saga of KPR: Theoretical and Experimental developments," Papers 1712.06358, arXiv.org.
    15. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Jean Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Post-Print hal-04145594, HAL.
    17. Benjamin Patrick Evans & Mikhail Prokopenko, 2024. "Bounded rationality for relaxing best response and mutual consistency: the quantal hierarchy model of decision making," Theory and Decision, Springer, vol. 96(1), pages 71-111, February.
    18. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Jean-Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Papers 2306.16165, arXiv.org.
    20. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.