IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305269.html
   My bibliography  Save this article

Epidemic spreading under infection-reduced-recovery

Author

Listed:
  • Zhang, Xiyun
  • Ruan, Zhongyuan
  • Zheng, Muhua
  • Barzel, Baruch
  • Boccaletti, Stefano

Abstract

The pandemic transition is a hallmark of current epidemiological models, predicting a continuous shift from a healthy to a pandemic state, whose critical point is driven by the parameters of the disease, e.g., its infection, recovery or mortality rates. These parameters, characterizing the disease cycle, are tuned by the biological characteristics of the pathogen, capturing its natural time-scales, often considered independent of the state of the spread itself. If, however, the disease gains a population-wide impact, its prevalence may exceed the health-care system capacity, resulting in sub-optimal treatment, and hence a potential feedback mechanism, in which the disease cycle is no longer decoupled from the state of the spread. Such dependence was demonstrated during the spread of COVID-19, for instance, where hard-hit places showed elevated mortality rates, likely due to an over-stressed health-care system. We therefore introduce an infection-reduced recovery mechanism, linking an individual’s rate of recovery to the prevalence of the disease. The outcome, we show, may have dramatic consequences on the observed patterns of spread. For instance, under rather broad conditions, the pandemic transition becomes discontinuous, exhibiting an abrupt shift from a healthy to a pandemic state. In some cases the disease reaches population-wide coverage even below the classically predicted critical transition point. We also observe a potential multi-stability and hysteresis, capturing an irreversible pandemic transition, in which overcoming the disease requires us to quench infection rates significantly below the critical threshold. These findings not only provide hints on the current difficulties to contain COVID-19, but more broadly, they set the bar for sustaining a stably functioning treatment capacity in the face of population-wide demand.

Suggested Citation

  • Zhang, Xiyun & Ruan, Zhongyuan & Zheng, Muhua & Barzel, Baruch & Boccaletti, Stefano, 2020. "Epidemic spreading under infection-reduced-recovery," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305269
    DOI: 10.1016/j.chaos.2020.110130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Gandzha, I.S. & Kliushnichenko, O.V. & Lukyanets, S.P., 2021. "Modeling and controlling the spread of epidemic with various social and economic scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.