IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v377y2020ics0096300320301272.html
   My bibliography  Save this article

Spatial dynamics of an epidemic model with nonlocal infection

Author

Listed:
  • Guo, Zun-Guang
  • Sun, Gui-Quan
  • Wang, Zhen
  • Jin, Zhen
  • Li, Li
  • Li, Can

Abstract

Nonlocal infection plays an important role in epidemic spread, which can reflect the real rules of infectious disease. To understand its mechanism on disease transmission, we construct an epidemic model with nonlocal delay and logistic growth. The Turing space for the emergence of stationary pattern is determined by series of inequations by mathematical analysis. Moreover, we use the multi-scale analysis to derive the amplitude equation, and obtain rich pattern structures by controlling the variation of the delay parameter. As the increase of delay parameter, the degree of pattern isolation increase as well as the density of the infected population decrease which prohibits the propagation of the disease in space. The results systematically reveal the impact of nonlocal delay on the spread of infectious diseases and provide some new theoretical supports for controlling the spread of infectious diseases.

Suggested Citation

  • Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
  • Handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320301272
    DOI: 10.1016/j.amc.2020.125158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320301272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Junli & Zhang, Tailei, 2009. "Bifurcation analysis of an SIS epidemic model with nonlinear birth rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1091-1099.
    2. Gao, Shujing & Liu, Yujiang & Nieto, Juan J. & Andrade, Helena, 2011. "Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1855-1868.
    3. Zhen, Zaili & Wei, Jingdong & Zhou, Jiangbo & Tian, Lixin, 2018. "Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 15-37.
    4. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    5. Gavin J. D. Smith & Dhanasekaran Vijaykrishna & Justin Bahl & Samantha J. Lycett & Michael Worobey & Oliver G. Pybus & Siu Kit Ma & Chung Lam Cheung & Jayna Raghwani & Samir Bhatt & J. S. Malik Peiris, 2009. "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic," Nature, Nature, vol. 459(7250), pages 1122-1125, June.
    6. Xing, Yi & Song, Lipeng & Sun, Gui-Quan & Jin, Zhen & Zhang, Juan, 2017. "Assessing reappearance factors of H7N9 avian influenza in China," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 192-204.
    7. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chen & Wang, Fang-Guang & Xue, Qiang & Li, Li & Wang, Zhen, 2022. "Pattern formation of a spatial vegetation system with root hydrotropism," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. De Cesare, Luigi & Sportelli, Mario, 2020. "Stability and direction of Hopf bifurcations of a cyclical growth model with two-time delays and one-delay dependent coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    6. Feng, Guo-Lin & Yang, Jie & Zhi, Rong & Zhao, Jun-Hu & Gong, Zhi-Qiang & Zheng, Zhi-Hai & Xiong, Kai-Guo & Qiao, Shao-Bo & Yan, Ziheng & Wu, Yong-Ping & Sun, Gui-Quan, 2020. "Improved prediction model for flood-season rainfall based on a nonlinear dynamics-statistic combined method," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Yihong Du, 2020. "Propagation, diffusion and free boundaries," Partial Differential Equations and Applications, Springer, vol. 1(5), pages 1-25, October.
    9. Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Xue, Qiang & Liu, Chen & Li, Li & Sun, Gui-Quan & Wang, Zhen, 2021. "Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments," Applied Mathematics and Computation, Elsevier, vol. 399(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    2. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    3. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    6. Sui, Xin & Li, Liang, 2018. "Guarantee network model and risk contagion," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 323-329.
    7. Khan, Asaf & Zaman, Gul, 2018. "Global analysis of an age-structured SEIR endemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 154-165.
    8. Xu, Bo & Wang, Ying & Han, Yu & He, Yuchang & Wang, Ziwei, 2021. "Interaction patterns and coordination in two population groups: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    10. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    12. Li, Li, 2017. "Transmission dynamics of Ebola virus disease with human mobility in Sierra Leone," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 575-579.
    13. Wang, Caiyun & Qi, Suying, 2018. "Spatial dynamics of a predator-prey system with cross diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 55-60.
    14. Wu, Zeyan & Li, Jianjuan & Li, Jing & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2017. "Pattern formations of an epidemic model with Allee effect and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 599-606.
    15. Hernández Guillén, J.D. & Martín del Rey, A., 2020. "A mathematical model for malware spread on WSNs with population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    17. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    18. Wu, Yong-Ping & Zhu, Chun-yangzi & Feng, Guo-Lin & Li, B. Larry, 2018. "Mathematical modeling of Fog-Haze evolution," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 1-4.
    19. Leno S Rocha & Frederico S A Rocha & Thársis T P Souza, 2017. "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
    20. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320301272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.