IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164415.html
   My bibliography  Save this article

Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability

Author

Listed:
  • Yonghong Xu
  • Jianguo Ren

Abstract

This paper describes a new computer virus spreading model which takes into account the possibility of a virus outbreak on a network with limited anti-virus ability. Then, the model is investigated for the existence of equilibria and their stabilities are proved and illustrated. Moreover, it is found that these two factors are not only relative to the threshold value determining whether the virus becomes extinct or not, but that they are also relative to the virus epidemic levels. Theoretical and experimental results indicate that, in some ways, it would be practically possible to eradicate the virus or suppress its prevalence below a suitable level. Consequently, some suggestions are proposed that may help eradicate or suppress virus propagation over a real computer network.

Suggested Citation

  • Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0164415
    DOI: 10.1371/journal.pone.0164415
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164415
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164415&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Lu-Xing & Yang, Xiaofan, 2013. "The effect of infected external computers on the spread of viruses: A compartment modeling study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6523-6535.
    2. Yang, Lu-Xing & Yang, Xiaofan, 2014. "The spread of computer viruses over a reduced scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 173-184.
    3. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    4. Yang, Lu-Xing & Draief, Moez & Yang, Xiaofan, 2016. "The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 403-415.
    5. Wierman, John C. & Marchette, David J., 2004. "Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 3-23, February.
    6. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lijuan & Hattaf, Khalid & Sun, Jitao, 2015. "Optimal control of a delayed SLBS computer virus model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 244-250.
    2. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    3. Ren, Jianguo & Xu, Yonghong, 2017. "A compartmental model for computer virus propagation with kill signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 446-454.
    4. Li, Pengdeng & Yang, Xiaofan & Yang, Lu-Xing & Xiong, Qingyu & Wu, Yingbo & Tang, Yuan Yan, 2018. "The modeling and analysis of the word-of-mouth marketing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 1-16.
    5. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    7. Zhang, Xulong & Gan, Chenquan, 2018. "Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1004-1018.
    8. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    10. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    11. Keshri, Neha & Gupta, Anurag & Mishra, Bimal Kumar, 2016. "Impact of reduced scale free network on wireless sensor network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 236-245.
    12. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    13. Zizhen Zhang & Huizhong Yang, 2015. "Hopf Bifurcation of an SIQR Computer Virus Model with Time Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, January.
    14. Amador, Julia, 2014. "The stochastic SIRA model for computer viruses," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1112-1124.
    15. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    16. Leno S Rocha & Frederico S A Rocha & Thársis T P Souza, 2017. "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
    17. Li, Li, 2017. "Transmission dynamics of Ebola virus disease with human mobility in Sierra Leone," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 575-579.
    18. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    19. Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
    20. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.