IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321009966.html
   My bibliography  Save this article

Pattern formation of a spatial vegetation system with root hydrotropism

Author

Listed:
  • Liu, Chen
  • Wang, Fang-Guang
  • Xue, Qiang
  • Li, Li
  • Wang, Zhen

Abstract

In many arid or semi-arid regions of the world, a variety of vegetation patterns have been found and many dynamic mechanisms have been proposed including scale-dependent, climatic effects, grazing and so on. However, the influences of the interactions between nonlocal effects and root hydrotropism on vegetation patterns are not well understood. As a result, we develop a reaction-diffusion equation with nonlocal time delay and root hydrotropism to explain the interaction between vegetation and water in this paper. We prove the existence of global weak solution of the water-vegetation model and analyze the Turing instability to identify the criteria for the emergence of vegetation patterns. The obtained results suggest that root hydrotropism has dual effects on vegetation pattern: on one hand, an appropriate root hydrotropism intensity can increase the vegetation density; on the other hand, when the root hydrotropism intensity exceeds the threshold, the isolation between vegetation patterns will gradually increase as the root hydrotropism intensity continues to increase, and thus there will be no vegetation pattern and desertification appears in this area. The research results provide a new theoretical basis for preventing from desertification.

Suggested Citation

  • Liu, Chen & Wang, Fang-Guang & Xue, Qiang & Li, Li & Wang, Zhen, 2022. "Pattern formation of a spatial vegetation system with root hydrotropism," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009966
    DOI: 10.1016/j.amc.2021.126913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hui-Jia & Xu, Wenzhe & Song, Shenpeng & Wang, Wen-Xuan & Perc, Matjaž, 2021. "The dynamics of epidemic spreading on signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Liang Chen & Zhuguo Ma & Tianbao Zhao, 2017. "Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China," Climatic Change, Springer, vol. 144(3), pages 461-473, October.
    3. Zhi Chen & Guirui Yu & Jianping Ge & Qiufeng Wang & Xianjin Zhu & Zhiwei Xu, 2015. "Roles of Climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    4. Xue, Qiang & Liu, Chen & Li, Li & Sun, Gui-Quan & Wang, Zhen, 2021. "Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    5. R. Valentini & G. Matteucci & A. J. Dolman & E.-D. Schulze & C. Rebmann & E. J. Moors & A. Granier & P. Gross & N. O. Jensen & K. Pilegaard & A. Lindroth & A. Grelle & C. Bernhofer & T. Grünwald & M. , 2000. "Respiration as the main determinant of carbon balance in European forests," Nature, Nature, vol. 404(6780), pages 861-865, April.
    6. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Qiang & Liu, Chen & Li, Li & Sun, Gui-Quan & Wang, Zhen, 2021. "Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    2. Jian Zhang & Yao Qin & Yuxuan Zhang & Xin Lu & Jianjun Cao, 2023. "Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China," Land, MDPI, vol. 12(11), pages 1-19, October.
    3. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    4. Azamir, Bouchaib & Bennis, Driss & Michel, Bertrand, 2022. "A simplified algorithm for identifying abnormal changes in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    6. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Bertinelli, Luisito & Strobl, Eric & Zou, Benteng, 2012. "Sustainable economic development and the environment: Theory and evidence," Energy Economics, Elsevier, vol. 34(4), pages 1105-1114.
    9. Ma, Jinlong & Wang, Peng & An, Zishuo, 2023. "The influence of layered community network structure on traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Verbeeck, Hans & Samson, Roeland & Granier, André & Montpied, Pierre & Lemeur, Raoul, 2008. "Multi-year model analysis of GPP in a temperate beech forest in France," Ecological Modelling, Elsevier, vol. 210(1), pages 85-103.
    11. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Yongxue Chen & Hui Zhang & Jingyu Wang & Cheng Li & Ning Yi & Yongxian Wen, 2022. "Analyzing an Epidemic of Human Infections with Two Strains of Zoonotic Virus," Mathematics, MDPI, vol. 10(7), pages 1-27, March.
    13. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    14. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    15. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    16. Ni, Xuelian & Xiong, Fei & Pan, Shirui & Chen, Hongshu & Wu, Jia & Wang, Liang, 2023. "How heterogeneous social influence acts on human decision-making in online social networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Chen, Zheng & Liu, Jieyu & Li, Li & Wu, Yongping & Feng, Guolin & Qian, Zhonghua & Sun, Gui-Quan, 2022. "Effects of climate change on vegetation patterns in Hulun Buir Grassland," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    18. Yihong Du, 2020. "Propagation, diffusion and free boundaries," Partial Differential Equations and Applications, Springer, vol. 1(5), pages 1-25, October.
    19. Lv, Laishui & Bardou, Dalal & Hu, Peng & Liu, Yanqiu & Yu, Gaohang, 2022. "Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Zhang, Hong-Tao & Wu, Yong-Ping & Sun, Gui-Quan & Liu, Chen & Feng, Guo-Lin, 2022. "Bifurcation analysis of a spatial vegetation model," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.