IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i3d10.1007_s10584-016-1847-2.html
   My bibliography  Save this article

Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China

Author

Listed:
  • Liang Chen

    (Chinese Academy of Sciences
    University of Saskatchewan)

  • Zhuguo Ma

    (Chinese Academy of Sciences)

  • Tianbao Zhao

    (Chinese Academy of Sciences)

Abstract

The regional climate effects of vegetation change in arid and semi-arid regions of China, which has experienced serious grassland degradation, are investigated in this study using the Weather Research and Forecasting (WRF) regional climate model. Two long-term simulation experiments (from January 1, 1980 to March 1, 2010), one with the land cover derived from the original United States Geological Survey’s (USGS) data (denoted as CTL) and the other (denoted as SEN) with a modification of the former one by vegetation degradation in arid and semi-arid regions of China, are undertaken to investigate the influence of land cover change on regional climate over arid and semi-arid regions of China. The possible mechanisms of how land cover change affects the regional climate in arid and semi-arid regions of China are also examined. The simulation results indicate that when compared with the observation datasets, the WRF model simulates the spatial pattern of observed temperature and precipitation quite well. After vegetation degradation over the arid and semi-arid regions of China, the net radiation and evaporation are reduced mainly within the degraded areas in summer, consistent with the reduction in precipitation and the increase in 2-m air temperature (T2 m).

Suggested Citation

  • Liang Chen & Zhuguo Ma & Tianbao Zhao, 2017. "Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China," Climatic Change, Springer, vol. 144(3), pages 461-473, October.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:3:d:10.1007_s10584-016-1847-2
    DOI: 10.1007/s10584-016-1847-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1847-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1847-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chen & Wang, Fang-Guang & Xue, Qiang & Li, Li & Wang, Zhen, 2022. "Pattern formation of a spatial vegetation system with root hydrotropism," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Jian Zhang & Yao Qin & Yuxuan Zhang & Xin Lu & Jianjun Cao, 2023. "Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China," Land, MDPI, vol. 12(11), pages 1-19, October.
    3. Nilton Atalaya Marin & Elgar Barboza & Rolando Salas López & Héctor V. Vásquez & Darwin Gómez Fernández & Renzo E. Terrones Murga & Nilton B. Rojas Briceño & Manuel Oliva-Cruz & Oscar Andrés Gamarra T, 2022. "Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)," Land, MDPI, vol. 11(5), pages 1-18, May.
    4. Panpan Chen & Huamin Liu & Zongming Wang & Dehua Mao & Cunzhu Liang & Lu Wen & Zhiyong Li & Jinghui Zhang & Dongwei Liu & Yi Zhuo & Lixin Wang, 2021. "Vegetation Dynamic Assessment by NDVI and Field Observations for Sustainability of China’s Wulagai River Basin," IJERPH, MDPI, vol. 18(5), pages 1-20, March.
    5. Zong-Liang Yang & Zhuguo Ma, 2017. "Foreword to the special issue: decadal scale drought in arid regions," Climatic Change, Springer, vol. 144(3), pages 389-390, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:3:d:10.1007_s10584-016-1847-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.