IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp161-172.html
   My bibliography  Save this article

Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis

Author

Listed:
  • Li, Can
  • Guo, Zun-Guang
  • Zhang, Zhi-Yu

Abstract

Brucellosis is a major problem worldwide in public health and existing work mainly focused on severity estimation based on the real data. However, global analysis on brucellosis transmission model is not well understood. In this paper, we presented a dynamical model of brucellosis transmission coupled with sheep and human populations and global analysis is shown based on Lyapunov functions. We found that the global dynamics of brucellosis model is determined by basic reproduction number R0: if R0 < 1, then the disease-free equilibrium is globally asymptotically stable; otherwise, the endemic equilibrium is globally asymptotically stable. We hope that our study may provide theoretical basis for the further work on brucellosis control.

Suggested Citation

  • Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:161-172
    DOI: 10.1016/j.chaos.2017.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    2. Xing, Yi & Song, Lipeng & Sun, Gui-Quan & Jin, Zhen & Zhang, Juan, 2017. "Assessing reappearance factors of H7N9 avian influenza in China," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 192-204.
    3. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    2. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    3. Li, Li, 2017. "Transmission dynamics of Ebola virus disease with human mobility in Sierra Leone," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 575-579.
    4. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Sui, Xin & Li, Liang, 2018. "Guarantee network model and risk contagion," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 323-329.
    6. Wang, Caiyun & Qi, Suying, 2018. "Spatial dynamics of a predator-prey system with cross diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 55-60.
    7. Wu, Zeyan & Li, Jianjuan & Li, Jing & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2017. "Pattern formations of an epidemic model with Allee effect and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 599-606.
    8. Khan, Asaf & Zaman, Gul, 2018. "Global analysis of an age-structured SEIR endemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 154-165.
    9. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    10. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    11. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    12. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    15. Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Wu, Yong-Ping & Zhu, Chun-yangzi & Feng, Guo-Lin & Li, B. Larry, 2018. "Mathematical modeling of Fog-Haze evolution," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 1-4.
    17. Ali Khaleel Dhaiban & Baydaa Khalaf Jabbar, 2021. "An optimal control model of COVID-19 pandemic: a comparative study of five countries," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 790-809, December.
    18. Leno S Rocha & Frederico S A Rocha & Thársis T P Souza, 2017. "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
    19. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    20. Berhe, Hailay Weldegiorgis & Makinde, Oluwole Daniel & Theuri, David Mwangi, 2019. "Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 903-921.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:161-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.