IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6526589.html
   My bibliography  Save this article

Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold

Author

Listed:
  • Wei Zhang
  • Juan Zhang
  • Yong-Ping Wu
  • Li Li

Abstract

As we all know, bacteria is different from virus which with certain types can be killed by the immune cells in the body. The brucellosis, a bacterial disease, can invade the body by indirect transmission from environment, which has not been researched by combining with immune cells. Considering the effects of immune cells, we put a minimum infection dose of brucellosis invading into the dairy cows as an immunological threshold and get a switch model. In this paper, we accomplish a thorough dynamics analysis of a switch model. On the one hand, we can get a disease-free and bacteria-free steady state and up to three endemic steady states which may be thoroughly analyzed in different cases of a minimum infection dose in a switch model. On the other hand, we calculate the basic reproduction number and know that the disease-free and bacteria-free steady state is a global stability when , and the one of the endemic steady state is a conditionally global stability when . We find that different amounts of may lead to different steady states of brucellosis, and considering the effects of immunology is more serious in mathematics and biology.

Suggested Citation

  • Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
  • Handle: RePEc:hin:complx:6526589
    DOI: 10.1155/2019/6526589
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6526589.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6526589.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6526589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sharomi, Oluwaseun Y. & Safi, Mohammad A. & Gumel, Abba B. & Gerberry, David J., 2017. "Exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 322-335.
    2. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    3. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    4. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaming Guo & Xiaofeng Luo & Juan Zhang & Mingtao Li, 2022. "A Mathematical Model for Ovine Brucellosis during Dynamic Transportation of Sheep, and Its Applications in Jalaid Banner and Ulanhot City," Mathematics, MDPI, vol. 10(19), pages 1-26, September.
    2. Cyrille Kenne & Gisèle Mophou & René Dorville & Pascal Zongo, 2022. "A Model for Brucellosis Disease Incorporating Age of Infection and Waning Immunity," Mathematics, MDPI, vol. 10(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Xu, Bo & Wang, Ying & Han, Yu & He, Yuchang & Wang, Ziwei, 2021. "Interaction patterns and coordination in two population groups: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Hernández Guillén, J.D. & Martín del Rey, A., 2020. "A mathematical model for malware spread on WSNs with population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    8. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    10. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    11. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Leno S Rocha & Frederico S A Rocha & Thársis T P Souza, 2017. "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
    13. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    14. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    15. Xinmiao An & Xiaomin Wang & Boyu Zhang, 2020. "Bimatrix Replicator Dynamics with Periodic Impulses," Dynamic Games and Applications, Springer, vol. 10(3), pages 676-694, September.
    16. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Li, Jing & Jin, Zhen & Sun, Gui-Quan, 2016. "Periodic solutions of a spatiotemporal predator-prey system with additional food," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 350-359.
    18. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    19. Zhang, Xueli & Huang, Yehui & Weng, Peixuan, 2016. "Stability and bifurcation of a predator–prey model with disease in the prey and temporal–spatial nonlocal effect," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 467-486.
    20. Ganegoda, Naleen & Götz, Thomas & Putra Wijaya, Karunia, 2021. "An age-dependent model for dengue transmission: Analysis and comparison to field data," Applied Mathematics and Computation, Elsevier, vol. 388(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6526589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.